Zn(O,S)(zinc oxysulfide) is an important chalcogenide material recently reported to be potentially applied as electrode buffers in thin film solar cells. Both vacuum and solution approaches have enabled the fabric...Zn(O,S)(zinc oxysulfide) is an important chalcogenide material recently reported to be potentially applied as electrode buffers in thin film solar cells. Both vacuum and solution approaches have enabled the fabrication of Zn(O,S) films. However they either require extreme conditions and high energy consumption for synthesis, or suffer from lack of controllability mainly due to the thermodynamic and kinetic distinction between Zn O and Zn S during film growth. Here we demonstrated an effective electrodeposition route to obtain high-quality Zn(O,S) thin films in a controllable manner. Importantly, tartaric acid was employed as a secondary complexing agent in the electrolyte to improve the film morphology, as well as to adjust other key properties such as composition and absorption. To elucidate the vital role that tartaric acid played, thermodynamic and kinetic processes of electrodeposition was investigated and discussed in detail. The accumulative contribution has shed light on further exploit of Zn(O,S) with tunable properties and optimization of the corresponding electrodeposition process, for the application in thin film solar cells.展开更多
The scaling behavior and optical properties of Zn(S, O and OH) thin films deposited on sod^-lime glass substrates by chemical bath deposition method were studied by combined roughness measurements, scanning electron...The scaling behavior and optical properties of Zn(S, O and OH) thin films deposited on sod^-lime glass substrates by chemical bath deposition method were studied by combined roughness measurements, scanning electron microscopy and optical properties measurement. From the scaling behaviour, the value of growth scaling exponent β2 0.38±0.06, was determined. This value indicated that the Zn(S, O, OH) film growth in the heterogeneous process was influenced by the surface diffusion and shadowing effect. Results of the optical properties measurements disclosed that the transmittance of the film was in the region of 70%-88% and the optical properties of the film grown for 40 min were better than those grown under other conditions. The energy band gap of the film deposited with 40 min was around 3.63 eV.展开更多
基金funding support from the National Natural Science Foundation of China(21371016)funding support from Young Talent Thousand Program
文摘Zn(O,S)(zinc oxysulfide) is an important chalcogenide material recently reported to be potentially applied as electrode buffers in thin film solar cells. Both vacuum and solution approaches have enabled the fabrication of Zn(O,S) films. However they either require extreme conditions and high energy consumption for synthesis, or suffer from lack of controllability mainly due to the thermodynamic and kinetic distinction between Zn O and Zn S during film growth. Here we demonstrated an effective electrodeposition route to obtain high-quality Zn(O,S) thin films in a controllable manner. Importantly, tartaric acid was employed as a secondary complexing agent in the electrolyte to improve the film morphology, as well as to adjust other key properties such as composition and absorption. To elucidate the vital role that tartaric acid played, thermodynamic and kinetic processes of electrodeposition was investigated and discussed in detail. The accumulative contribution has shed light on further exploit of Zn(O,S) with tunable properties and optimization of the corresponding electrodeposition process, for the application in thin film solar cells.
基金supported by the National High Technology Research and Development Program of China(Grant No.2004AA513020)the National Basic Research Program of China(Grant No.2010CB933803)the National Natural Science Foundation of China(Grant Nos.60906033,50902074,and 90922037)
文摘The scaling behavior and optical properties of Zn(S, O and OH) thin films deposited on sod^-lime glass substrates by chemical bath deposition method were studied by combined roughness measurements, scanning electron microscopy and optical properties measurement. From the scaling behaviour, the value of growth scaling exponent β2 0.38±0.06, was determined. This value indicated that the Zn(S, O, OH) film growth in the heterogeneous process was influenced by the surface diffusion and shadowing effect. Results of the optical properties measurements disclosed that the transmittance of the film was in the region of 70%-88% and the optical properties of the film grown for 40 min were better than those grown under other conditions. The energy band gap of the film deposited with 40 min was around 3.63 eV.