The scaling behavior and optical properties of Zn(S, O and OH) thin films deposited on sod^-lime glass substrates by chemical bath deposition method were studied by combined roughness measurements, scanning electron...The scaling behavior and optical properties of Zn(S, O and OH) thin films deposited on sod^-lime glass substrates by chemical bath deposition method were studied by combined roughness measurements, scanning electron microscopy and optical properties measurement. From the scaling behaviour, the value of growth scaling exponent β2 0.38±0.06, was determined. This value indicated that the Zn(S, O, OH) film growth in the heterogeneous process was influenced by the surface diffusion and shadowing effect. Results of the optical properties measurements disclosed that the transmittance of the film was in the region of 70%-88% and the optical properties of the film grown for 40 min were better than those grown under other conditions. The energy band gap of the film deposited with 40 min was around 3.63 eV.展开更多
Aiming to improve the reactive adsorption desulfurization(RADS) performances of Ni/Zn O adsorbents,ZnxAly(OH)2(CO3)z·x H2 O precursor is synthesized by coprecipitation of Zn2+,AlO-2,and CO2-3; the Zn OZn6A...Aiming to improve the reactive adsorption desulfurization(RADS) performances of Ni/Zn O adsorbents,ZnxAly(OH)2(CO3)z·x H2 O precursor is synthesized by coprecipitation of Zn2+,AlO-2,and CO2-3; the Zn OZn6Al2O9 composite oxides are obtained by the calcination of ZnxAly(OH)2(CO3)z·x H2 O precursor,and the Ni/Zn O-Zn6Al2O9(6.0 wt% Ni O) adsorbents are prepared by wetness impregnation method. The phase,acid strength,acid type and quantity,morphology,and thermal properties were characterized by X-ray diffraction,temperature-programmed desorption of ammonia,pyridine-adsorbed infrared spectrum,high-resolution transmission electron microscopy,and Thermo Gravimetry-Derivative Thermo Gravimetry(TG-DTG),respectively. The breakthrough sulfur capacities of six adsorbents are between 34.2 and 47.9 mg/gcat. The kinetic studies indicated that the active energy of RADS(49.4 k J/mol) could reach nano-sized Zn O,the particle size of is about 12.0 nm. All the excellent RADS performances can be due to the high SBET. Also,there are some extents of aromatization reactions that occur,which can be contributed to the B?nsted acid rooted in Zn6Al2O9 composite oxide,and the octane number of products can be preserved well.展开更多
The Cu2ZnSnS4 (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation soft- ware analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the ...The Cu2ZnSnS4 (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation soft- ware analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the simulation is Al/ZnO:Al/nZn(O,S)/pCZTS/Mo. The primary motivation of this simulation work is to optimize the composition in the ZnO1-xSx buffer layer, which would yield higher conversion efficiency. By varying S/(S+O) ratio x, the conduction band offset (CBO) at CZTS/Zn(O,S) interface can range from -0.23 eV to 1.06eV if the full range of the ratio is considered. The optimal CBO of 0.23eV can be achieved when the ZnO1-xSx buffer has an S/(S+O) ratio of 0.6. The solar cell efficiency first increases with increasing sulfur content and then decreases abruptly for x〉 0.6, which reaches the highest value of 17.55% by our proposed optimal sulfur content x= 0.6. Our results provide guidance in dealing with the ZnO1-xSx buffer layer deposition for high efficiency CZTS solar cells.展开更多
The anode material Zn4SO4(OH)6·5H2O for nickle/zinc batteries was synthesized by hydrothermal method and was identified by XRD techniques. TG/DAT measurements reveal that the products lose lattice water at 145 ...The anode material Zn4SO4(OH)6·5H2O for nickle/zinc batteries was synthesized by hydrothermal method and was identified by XRD techniques. TG/DAT measurements reveal that the products lose lattice water at 145 ℃ and decompose to 3ZnO·ZnSO4 at 274 ℃. Cyclic voltammetry and recharging/discharging results show that CV curves have good symmetry, the ratio of oxidation area to reduction area for each curve is about 1, and the peak potential EPa and EPc have little change with the scanning rate. At 50th circle, more than 65% of theoretical capacity is obtained while at the same condition, zinc oxide electrode only remains 35% of theoretical capacity.展开更多
Zn(O,S)(zinc oxysulfide) is an important chalcogenide material recently reported to be potentially applied as electrode buffers in thin film solar cells. Both vacuum and solution approaches have enabled the fabric...Zn(O,S)(zinc oxysulfide) is an important chalcogenide material recently reported to be potentially applied as electrode buffers in thin film solar cells. Both vacuum and solution approaches have enabled the fabrication of Zn(O,S) films. However they either require extreme conditions and high energy consumption for synthesis, or suffer from lack of controllability mainly due to the thermodynamic and kinetic distinction between Zn O and Zn S during film growth. Here we demonstrated an effective electrodeposition route to obtain high-quality Zn(O,S) thin films in a controllable manner. Importantly, tartaric acid was employed as a secondary complexing agent in the electrolyte to improve the film morphology, as well as to adjust other key properties such as composition and absorption. To elucidate the vital role that tartaric acid played, thermodynamic and kinetic processes of electrodeposition was investigated and discussed in detail. The accumulative contribution has shed light on further exploit of Zn(O,S) with tunable properties and optimization of the corresponding electrodeposition process, for the application in thin film solar cells.展开更多
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-tren...The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD(H2O-SMOW) and δ18O(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ13C(PDB) values ranging from-6.2‰ to-4.1‰ and δ18O(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ34S(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The 206Pb/204Pb,207Pb/204Pb and 208Pb/204Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.展开更多
This paper presents an evaluation of different dose of Sodium Metabisulfite (0.01 M Na2S2O5), (Na2S2O5) + (0.1 HCl), and Distilled water for the removal of soil contaminated with Pb, Zn and Cr by the column mode. The ...This paper presents an evaluation of different dose of Sodium Metabisulfite (0.01 M Na2S2O5), (Na2S2O5) + (0.1 HCl), and Distilled water for the removal of soil contaminated with Pb, Zn and Cr by the column mode. The field soil contained concentrations of Pb (307.31 mg⋅kg−1), Zn (207.77 mg⋅kg−1) and Cr (447.50 mg⋅kg−1). Both (0.01 M Na2S2O5), (Na2S2O5) + (0.1 HCl), and Distilled water were found to be effective on removing (Na2S2O5) Pb, Cr and Zn respectively. (Na2S2O5) + (0.1 HCl) Cr, Zn and Pb respectively. Sulfur Pb, Cr and Zn respectively. The removal rate of Pb, Zn, and Cr varied from 10.35% - 26%, 3.4% - 21.60% and 4.97% - 23.88% for (0.01 M Na2S2O5 respectively. The removal rate of Pb, Zn, and Cr varied from 16.13% - 20.07%, 8.20% - 23.48%, 5.42% - 28.93% for (0.01 M Na2S2O5 + 0.1 M HCl) respectively. The removal rate of Pb, Zn, and Cr varied from 10.20% - 25.5%, 9.55% - 25.13% and 6.04% - 25.54% for (S) respectively.展开更多
Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in th...Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in the temperature range of 295?322 K. The peak temperature, the enthalpy, and entropy of the phase transition were determined to be (316.269±1.039) K, (11.194±0.335) kJ?mol-1, and (35.391±0.654) J?K-1?mol-1, respectively. The experimental values of the molar heat capacities in the temperature regions of 78?295 K and 322?374 K were fitted to two polynomial equations of heat capacities(Cp,m) with reduced temperatures(X) and [X = f(T)], with the help of the least squares method, respectively. The smoothed molar heat capacities and thermodynamic functions of the compound, relative to that of the standard reference temperature 293.15 K, were calculated on the basis of the fitted polynomials and tabulated with an interval of 5 K. In addition, the possible mechanism of thermal decomposition of the compound was inferred by the result of TG-DTG analysis.展开更多
In order to investigate whether an air–water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas...In order to investigate whether an air–water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas(air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH(A;Σ;–X;Π;) and O(3p;P–3s;S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53–9.58 mg l;, depending on the gas/water mixture ratio. The production of OH(A;Σ;–X;Π;) rises with the increase of water content, whereas the O(3p;P–3s;S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air–water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH(A;Σ;–X;Π;) is a more effective species in inactivation than O(3p;P–3s;S) and the water content benefit the spore germination inhibition through rising the OH(A;Σ;–X;Π;) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l;.展开更多
The Zn(O,S)thin film is considered a most promising candidate for a cadmium-free buffer layer of the Cu(In,Ga)Se_(2)(CIGS)thin-film solar cell due to its advantages of optical responses in the short-wavelength region ...The Zn(O,S)thin film is considered a most promising candidate for a cadmium-free buffer layer of the Cu(In,Ga)Se_(2)(CIGS)thin-film solar cell due to its advantages of optical responses in the short-wavelength region and adjustable bandgap.In this paper,the thin-film growth mechanism and process optimization of Zn(O,S)films fabricated using the chemical bath deposition method are sys-tematically investigated.The thickness and quality of Zn(O,S)films were found to be strongly affected by the concentration variation of the precursor chemicals.It was also revealed that different surface morphologies of Zn(O,S)films would appear if the reaction time were changed and,subsequently,the optimum reaction time was defined.The film-growth curve suggested that the growth rate varied linearly with the deposition temperature and some defects appeared when the temperature was too high.In addition,to further improve the film quality,an effective post-treatment approach was proposed and the experimental results showed that the microstructure of the Zn(O,S)thin film was improved by an ammonia etching process followed by an annealing process.For com-parison purposes,both Zn(O,S)-based and CdS-based devices were fabricated and characterized.The device with a Zn(O,S)-CIGS solar cell after post-treatment showed near conversion efficiency comparable to that of the device with the CdS-CIGS cell.展开更多
基金supported by the National High Technology Research and Development Program of China(Grant No.2004AA513020)the National Basic Research Program of China(Grant No.2010CB933803)the National Natural Science Foundation of China(Grant Nos.60906033,50902074,and 90922037)
文摘The scaling behavior and optical properties of Zn(S, O and OH) thin films deposited on sod^-lime glass substrates by chemical bath deposition method were studied by combined roughness measurements, scanning electron microscopy and optical properties measurement. From the scaling behaviour, the value of growth scaling exponent β2 0.38±0.06, was determined. This value indicated that the Zn(S, O, OH) film growth in the heterogeneous process was influenced by the surface diffusion and shadowing effect. Results of the optical properties measurements disclosed that the transmittance of the film was in the region of 70%-88% and the optical properties of the film grown for 40 min were better than those grown under other conditions. The energy band gap of the film deposited with 40 min was around 3.63 eV.
文摘Aiming to improve the reactive adsorption desulfurization(RADS) performances of Ni/Zn O adsorbents,ZnxAly(OH)2(CO3)z·x H2 O precursor is synthesized by coprecipitation of Zn2+,AlO-2,and CO2-3; the Zn OZn6Al2O9 composite oxides are obtained by the calcination of ZnxAly(OH)2(CO3)z·x H2 O precursor,and the Ni/Zn O-Zn6Al2O9(6.0 wt% Ni O) adsorbents are prepared by wetness impregnation method. The phase,acid strength,acid type and quantity,morphology,and thermal properties were characterized by X-ray diffraction,temperature-programmed desorption of ammonia,pyridine-adsorbed infrared spectrum,high-resolution transmission electron microscopy,and Thermo Gravimetry-Derivative Thermo Gravimetry(TG-DTG),respectively. The breakthrough sulfur capacities of six adsorbents are between 34.2 and 47.9 mg/gcat. The kinetic studies indicated that the active energy of RADS(49.4 k J/mol) could reach nano-sized Zn O,the particle size of is about 12.0 nm. All the excellent RADS performances can be due to the high SBET. Also,there are some extents of aromatization reactions that occur,which can be contributed to the B?nsted acid rooted in Zn6Al2O9 composite oxide,and the octane number of products can be preserved well.
基金Supported by the Guiding Project of Strategic Emerging Industries of Fujian Provincial Department of Science and Technology under Grant No 2015H0010the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure of Shanghai Institute of Ceramics of Chinese Academy of Sciences under Grant No SKL201404SICthe Natural Science Foundation of Fujian Province under Grant No 2016J01751
文摘The Cu2ZnSnS4 (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation soft- ware analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the simulation is Al/ZnO:Al/nZn(O,S)/pCZTS/Mo. The primary motivation of this simulation work is to optimize the composition in the ZnO1-xSx buffer layer, which would yield higher conversion efficiency. By varying S/(S+O) ratio x, the conduction band offset (CBO) at CZTS/Zn(O,S) interface can range from -0.23 eV to 1.06eV if the full range of the ratio is considered. The optimal CBO of 0.23eV can be achieved when the ZnO1-xSx buffer has an S/(S+O) ratio of 0.6. The solar cell efficiency first increases with increasing sulfur content and then decreases abruptly for x〉 0.6, which reaches the highest value of 17.55% by our proposed optimal sulfur content x= 0.6. Our results provide guidance in dealing with the ZnO1-xSx buffer layer deposition for high efficiency CZTS solar cells.
文摘The anode material Zn4SO4(OH)6·5H2O for nickle/zinc batteries was synthesized by hydrothermal method and was identified by XRD techniques. TG/DAT measurements reveal that the products lose lattice water at 145 ℃ and decompose to 3ZnO·ZnSO4 at 274 ℃. Cyclic voltammetry and recharging/discharging results show that CV curves have good symmetry, the ratio of oxidation area to reduction area for each curve is about 1, and the peak potential EPa and EPc have little change with the scanning rate. At 50th circle, more than 65% of theoretical capacity is obtained while at the same condition, zinc oxide electrode only remains 35% of theoretical capacity.
基金funding support from the National Natural Science Foundation of China(21371016)funding support from Young Talent Thousand Program
文摘Zn(O,S)(zinc oxysulfide) is an important chalcogenide material recently reported to be potentially applied as electrode buffers in thin film solar cells. Both vacuum and solution approaches have enabled the fabrication of Zn(O,S) films. However they either require extreme conditions and high energy consumption for synthesis, or suffer from lack of controllability mainly due to the thermodynamic and kinetic distinction between Zn O and Zn S during film growth. Here we demonstrated an effective electrodeposition route to obtain high-quality Zn(O,S) thin films in a controllable manner. Importantly, tartaric acid was employed as a secondary complexing agent in the electrolyte to improve the film morphology, as well as to adjust other key properties such as composition and absorption. To elucidate the vital role that tartaric acid played, thermodynamic and kinetic processes of electrodeposition was investigated and discussed in detail. The accumulative contribution has shed light on further exploit of Zn(O,S) with tunable properties and optimization of the corresponding electrodeposition process, for the application in thin film solar cells.
基金financially supported by the National Basic Research Program of China(973 Program,No. 2014CB440905)the Key Program of National Natural Science Foundation(No.41430315)the National Natural Science Foundation of China(Nos.41272111 and 41163001)
文摘The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD(H2O-SMOW) and δ18O(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ13C(PDB) values ranging from-6.2‰ to-4.1‰ and δ18O(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ34S(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The 206Pb/204Pb,207Pb/204Pb and 208Pb/204Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.
文摘This paper presents an evaluation of different dose of Sodium Metabisulfite (0.01 M Na2S2O5), (Na2S2O5) + (0.1 HCl), and Distilled water for the removal of soil contaminated with Pb, Zn and Cr by the column mode. The field soil contained concentrations of Pb (307.31 mg⋅kg−1), Zn (207.77 mg⋅kg−1) and Cr (447.50 mg⋅kg−1). Both (0.01 M Na2S2O5), (Na2S2O5) + (0.1 HCl), and Distilled water were found to be effective on removing (Na2S2O5) Pb, Cr and Zn respectively. (Na2S2O5) + (0.1 HCl) Cr, Zn and Pb respectively. Sulfur Pb, Cr and Zn respectively. The removal rate of Pb, Zn, and Cr varied from 10.35% - 26%, 3.4% - 21.60% and 4.97% - 23.88% for (0.01 M Na2S2O5 respectively. The removal rate of Pb, Zn, and Cr varied from 16.13% - 20.07%, 8.20% - 23.48%, 5.42% - 28.93% for (0.01 M Na2S2O5 + 0.1 M HCl) respectively. The removal rate of Pb, Zn, and Cr varied from 10.20% - 25.5%, 9.55% - 25.13% and 6.04% - 25.54% for (S) respectively.
基金the National Natural Science Foundation of China(No.20673050).
文摘Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in the temperature range of 295?322 K. The peak temperature, the enthalpy, and entropy of the phase transition were determined to be (316.269±1.039) K, (11.194±0.335) kJ?mol-1, and (35.391±0.654) J?K-1?mol-1, respectively. The experimental values of the molar heat capacities in the temperature regions of 78?295 K and 322?374 K were fitted to two polynomial equations of heat capacities(Cp,m) with reduced temperatures(X) and [X = f(T)], with the help of the least squares method, respectively. The smoothed molar heat capacities and thermodynamic functions of the compound, relative to that of the standard reference temperature 293.15 K, were calculated on the basis of the fitted polynomials and tabulated with an interval of 5 K. In addition, the possible mechanism of thermal decomposition of the compound was inferred by the result of TG-DTG analysis.
基金supported by National Natural Science Foundation of China (NSFC) under Grants No. 51407020National Key Technology Research and Development Program of the Ministry of Science and Technology of China under Grants No. 2014BAC13B05Visiting Scholarship of State Key Laboratory of Power Transmission Equipment & System Security and New Technology (Chongqing University) No. 2007DA10512716404
文摘In order to investigate whether an air–water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas(air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH(A;Σ;–X;Π;) and O(3p;P–3s;S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53–9.58 mg l;, depending on the gas/water mixture ratio. The production of OH(A;Σ;–X;Π;) rises with the increase of water content, whereas the O(3p;P–3s;S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air–water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH(A;Σ;–X;Π;) is a more effective species in inactivation than O(3p;P–3s;S) and the water content benefit the spore germination inhibition through rising the OH(A;Σ;–X;Π;) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l;.
基金financially supported by National Key R&D Program of China(grant no.2018YFB1500200).
文摘The Zn(O,S)thin film is considered a most promising candidate for a cadmium-free buffer layer of the Cu(In,Ga)Se_(2)(CIGS)thin-film solar cell due to its advantages of optical responses in the short-wavelength region and adjustable bandgap.In this paper,the thin-film growth mechanism and process optimization of Zn(O,S)films fabricated using the chemical bath deposition method are sys-tematically investigated.The thickness and quality of Zn(O,S)films were found to be strongly affected by the concentration variation of the precursor chemicals.It was also revealed that different surface morphologies of Zn(O,S)films would appear if the reaction time were changed and,subsequently,the optimum reaction time was defined.The film-growth curve suggested that the growth rate varied linearly with the deposition temperature and some defects appeared when the temperature was too high.In addition,to further improve the film quality,an effective post-treatment approach was proposed and the experimental results showed that the microstructure of the Zn(O,S)thin film was improved by an ammonia etching process followed by an annealing process.For com-parison purposes,both Zn(O,S)-based and CdS-based devices were fabricated and characterized.The device with a Zn(O,S)-CIGS solar cell after post-treatment showed near conversion efficiency comparable to that of the device with the CdS-CIGS cell.