A pseudo-alloy PS45/CuAl8 composite coating was sprayed on steel substrate by high-velocity activated arc spraying (HVAA) process. Its sliding wear behavior at room temperature was evaluated by M-2000 wear tester. For...A pseudo-alloy PS45/CuAl8 composite coating was sprayed on steel substrate by high-velocity activated arc spraying (HVAA) process. Its sliding wear behavior at room temperature was evaluated by M-2000 wear tester. For comparison, a single CuAl8 coating was also prepared and tested under the same conditions. It is found that the pseudo-alloy composite coating consists of α-Cu and γ-Ni metallic matrix phases together with homogenously distributed minor Al 2 O 3 , Cr 2 O 3 oxide phases. Moreover, pseudo-alloy coating possesses much better sliding wear resistance than CuAl8 coating due to the enhanced hardness and microstructural homogenization. Fatigue wear and abrasive wear are responsible for the wear-down mechanism of the pseudo-alloy coating.展开更多
A new hot-dip galvanizing method was employed on hot-rolled low carbon steel.The effects of Al contents on microstructure,micro-hardness and corrosion resistance of Zn-Al alloy coatings were systematically investigate...A new hot-dip galvanizing method was employed on hot-rolled low carbon steel.The effects of Al contents on microstructure,micro-hardness and corrosion resistance of Zn-Al alloy coatings were systematically investigated.Phase composition,microstructure and element distribution in Zn-Al alloy coatings were analyzed using X-ray diffraction(XRD)and electron probe micro analysis(EPMA),respectively.It is found that Al content(0.6-6.0 wt.%)in galvanizing zinc affects surface quality and adhesion between coatings and matrix in the newly developed method.In addition,with increasing Al content,micro-hardness significantly increased due to the increase in Zn-Al eutectoid phases.Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)also revealed that increase in Al plays a noticeable role in improving the corrosion resistance of Zn-Al alloy coatings.展开更多
基金supported by Key Projects of the Guang-dong Provincial Science & Technology Program (Nos.2009A090100045 and 2010A090200077)Project of the Zhongshan Civic Science & Technology Program (No.20103A262)
文摘A pseudo-alloy PS45/CuAl8 composite coating was sprayed on steel substrate by high-velocity activated arc spraying (HVAA) process. Its sliding wear behavior at room temperature was evaluated by M-2000 wear tester. For comparison, a single CuAl8 coating was also prepared and tested under the same conditions. It is found that the pseudo-alloy composite coating consists of α-Cu and γ-Ni metallic matrix phases together with homogenously distributed minor Al 2 O 3 , Cr 2 O 3 oxide phases. Moreover, pseudo-alloy coating possesses much better sliding wear resistance than CuAl8 coating due to the enhanced hardness and microstructural homogenization. Fatigue wear and abrasive wear are responsible for the wear-down mechanism of the pseudo-alloy coating.
基金the National Science and Technology Pillar Program of China (2011BAE13B04)National Natural Science Foundation of China(51204047and U1660117)Fundamental Research Funds for the Central Universi-ties of China(N130407004)for the financial support
文摘A new hot-dip galvanizing method was employed on hot-rolled low carbon steel.The effects of Al contents on microstructure,micro-hardness and corrosion resistance of Zn-Al alloy coatings were systematically investigated.Phase composition,microstructure and element distribution in Zn-Al alloy coatings were analyzed using X-ray diffraction(XRD)and electron probe micro analysis(EPMA),respectively.It is found that Al content(0.6-6.0 wt.%)in galvanizing zinc affects surface quality and adhesion between coatings and matrix in the newly developed method.In addition,with increasing Al content,micro-hardness significantly increased due to the increase in Zn-Al eutectoid phases.Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)also revealed that increase in Al plays a noticeable role in improving the corrosion resistance of Zn-Al alloy coatings.