Cadmium (Cd) contamination of agricultural soils may pose severe risks and hazards for humans through food chain, as crop plants accumulate Cd in their edible tissues. Cd translocation from soil to plant is largely ...Cadmium (Cd) contamination of agricultural soils may pose severe risks and hazards for humans through food chain, as crop plants accumulate Cd in their edible tissues. Cd translocation from soil to plant is largely dependent on soil and plant type. Cd accumulation occurs much more in crop plants grown in soils with severe zinc (Zn) deficiency and durum wheat tends to accumulate more Cd in grain than the other cereals. The objective of this study was to evaluate the alleviating effect of Zn fertilization on Cd accumulation in durum wheat grain. A pot experiment including foliar Zn application of 0.3% w/v ZnSO4 and soil Cd applications of 0, 0.2 and 1.0 mg/kg was carried out in a completely randomized design using a Zn-deficient soil. Grain Cd concentration of plants receiving 0 mg/kg Cd was 31 μg/kg, whereas with 0.2 mg/kg and 1.0 mg/kg Cd applications it increased to the levels of 215 μg/kg and 1,489 μg/kg, respectively. Along with 0.3% ZnSO4 leaf applications, grain Cd concentrations decreased to 171 μg/kg and 754 μg/kg, by a reduction of 20.5% and 49.3%, respectively. In conclusion, it was determined that leaf applied Zn fertilizer might alleviate Cd accumulation in durum wheat grain in Zn deficiency conditions.展开更多
文摘Cadmium (Cd) contamination of agricultural soils may pose severe risks and hazards for humans through food chain, as crop plants accumulate Cd in their edible tissues. Cd translocation from soil to plant is largely dependent on soil and plant type. Cd accumulation occurs much more in crop plants grown in soils with severe zinc (Zn) deficiency and durum wheat tends to accumulate more Cd in grain than the other cereals. The objective of this study was to evaluate the alleviating effect of Zn fertilization on Cd accumulation in durum wheat grain. A pot experiment including foliar Zn application of 0.3% w/v ZnSO4 and soil Cd applications of 0, 0.2 and 1.0 mg/kg was carried out in a completely randomized design using a Zn-deficient soil. Grain Cd concentration of plants receiving 0 mg/kg Cd was 31 μg/kg, whereas with 0.2 mg/kg and 1.0 mg/kg Cd applications it increased to the levels of 215 μg/kg and 1,489 μg/kg, respectively. Along with 0.3% ZnSO4 leaf applications, grain Cd concentrations decreased to 171 μg/kg and 754 μg/kg, by a reduction of 20.5% and 49.3%, respectively. In conclusion, it was determined that leaf applied Zn fertilizer might alleviate Cd accumulation in durum wheat grain in Zn deficiency conditions.