The effects of heat treatment on the microstructure and mechanical properties of ZA27 alloy were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM) and mechanical characterization.The results indi...The effects of heat treatment on the microstructure and mechanical properties of ZA27 alloy were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM) and mechanical characterization.The results indicated that the as-cast microstructure of the alloy was mainly composed of α,decomposed β,η and ε phases.After solid solution treatment at 365 ℃ for 1 h,α and η phases dissolved,and the microstructure of specimen was mainly composed of the supersaturated β phases.The phase decomposition of supersaturated ZA27 alloy is a two-stage phase transformation:the decomposition of the supersaturated β phase at the early stage of aging,and with the increase of aging time,ε phase decomposition through a four-phase transformation:α+ε→T '+ η.A good combination of high tensile elongation and reasonable strength can be achieved by suitable heat treatments.展开更多
The effect of the mixed rare earths of Ce on the phase transformation in ascast ZA 27 alloy during compressive was investigated under 37 MPa and at 160 deg C by X-raydiffraction technique and SEM. The results showed t...The effect of the mixed rare earths of Ce on the phase transformation in ascast ZA 27 alloy during compressive was investigated under 37 MPa and at 160 deg C by X-raydiffraction technique and SEM. The results showed that the as cast microstructure of ZA 27-RE alloyconsisted of a dendritic Al-rich alpha' surrounded by Zn-rich beta' phase, interdendritic epsilonphase and Zn-rich eta phase together with a complex Z phase which was a complex constitute compound,(RE,Cu)Al_5Zn_(16), dispersed in crystal interfaces or branch crystal interfaces and stable duringcompressive creep test at 160 deg C. The phase transformations of ZA 27-RE alloy, decomposition ofbeta' phase arid four transformation, were delayed by the addition of rare earths, also the lamellarstructure and the spheroidized structure in ZA 27-RE alloy were finer than in ZA 27 alloy duringcompressive creep test at 160 deg C at the same creep time, and the compressive creep resistance ofZA 27-RE alloy was higher than that of ZA 27 alloy.展开更多
The investigations were performed into the formation processes of liquid pools entrapped within solid grains of three ZA27 alloys, produced respectively by either grain refinement, or traditional permanent casting or ...The investigations were performed into the formation processes of liquid pools entrapped within solid grains of three ZA27 alloys, produced respectively by either grain refinement, or traditional permanent casting or mechanical stirring, during partial remelting at semisolid temperature of 460℃. The results show that the rapid coalescence of primary grains due to merging of secondary arms during the initial stage of partial remelting is the main cause for the formation of the entrapped liquid pools. This coalescence resulted in that a high quality of eutectics, especially the 77 phase, was entrapped within the grains, and then remelted to form liquid pools during the subsequent heating. In addition, the growth of the η phase decomposed from the primary α' phase and β phase and the subsequent remelting is another cause for the refined and permanent mould casting alloys. Furthermore, the agglomeration of the solid grains also resulted in the entrapment of liquid in the interior of grains.展开更多
The morphology of ZA-27 alloy reinforced by RE compounds and its wear-resistance were studied. It is found that some nodular second phases appear due to the addition of Si and RE, which can disperse in grain boundari...The morphology of ZA-27 alloy reinforced by RE compounds and its wear-resistance were studied. It is found that some nodular second phases appear due to the addition of Si and RE, which can disperse in grain boundaries or between dendrite crystals so that the alloy has been refined. Energy spectrum analysis of scanning electron microscope shows that the second phases are complex compounds containing RE, Al, Zn and Si. The micro- hardness test indicates that micro-hardness values of the compounds are higher than those of the matrix. The wear-resis tance of ZA-27 alloy reinforced by RE compounds is 4 times as high as that of ZA-27 alloy and also higher than that of ZA-27 alloy containing Si phase. The impact toughness of the alloy containing RE and Si is higher than that of the alloy containing Si.展开更多
To improve the mechanical properties and wear resistance of ZA27 alloy, Si was introduced to the alloy, and the effect of Si alloying and T6 heat treatment on the microstructure, mechanical properties and wear resista...To improve the mechanical properties and wear resistance of ZA27 alloy, Si was introduced to the alloy, and the effect of Si alloying and T6 heat treatment on the microstructure, mechanical properties and wear resistance was investigated. The results show that with 0.55% Si, the microstructure of the alloy can be refined effectively, which leads to the increase of hardness. But the tensile strength and elongation decrease because Si undermines the integrity of the matrix. On the other hand, the dendrites are transformed into a desired α+η+(α+η)mixture with T6 heat treatment, which introduces a remarkable increase to the elongation and hardness of the alloy. The wear resistance of the ZA27 alloy with Si alloying is significantly better than that of the ZA27 alloy without Si. With the increase of Si addition, the wear resistance of the alloy firstly increases and then decreases.In the alloy without Si alloying, severe plastic deformation and large delamination were observed on the worn surface of the alloy. However, with the increase of Si, the main wear mechanism transformed to abrasive wear gradually. In addition, the T6 treatment can further improve the wear resistance of the alloy with Si alloying.展开更多
The effect of rectangle wave pulse current on solidification structure of ZA27 alloy was studied. The restdts show that the wave pattern relies on the frequency range of harmonic wave and the energy of pulse current w...The effect of rectangle wave pulse current on solidification structure of ZA27 alloy was studied. The restdts show that the wave pattern relies on the frequency range of harmonic wave and the energy of pulse current within the frequency range of pulse current. Imposed pulse current could induce the solidification system to oscillate. The frequency range and the relevant energy distribution of pulse current exert an influence on the amount of atoms involved for forming critical nucleus, the surface states of dusters in melt, the oscillating state of melt on the surface of dusters, the active energy of atom diffusion , the frequnce response of the resonance of bulk melt and the absorbability of the solidification system to the external work. Rectangle wave pulse current involves rich harmonic waves ; the amplitudes of high order of harmonic waves are higher and reduce slowly, so it has a better effect on inoculation and modification.展开更多
The structural evolution of ZA27 alloy modified by element Zr was studied during semi solid isothermal heat treatment, and its transformation mechanism was also discussed. The results indicate that the primary α phas...The structural evolution of ZA27 alloy modified by element Zr was studied during semi solid isothermal heat treatment, and its transformation mechanism was also discussed. The results indicate that the primary α phase changes from equiaxed grains to spherical grains gradually at semi solid temperature of 460 ℃. With increasing isothermal time, the eutectic between boundaries of α phase diffuses toward α phase, and the primary equiaxed grain arms merge and boundaries tend to disappear to form near particle grains. Further, the eutectic left on α boundaries melts to make the near particle grains separate, and form spherical structure at last. [展开更多
ZA27 alloy was prepared by casting with permanent mold and then annealed at 250℃ for 1-4h. The damping capaciG of the alloy was measured using a testing apparatus based on the cantilever beam technique. It was found ...ZA27 alloy was prepared by casting with permanent mold and then annealed at 250℃ for 1-4h. The damping capaciG of the alloy was measured using a testing apparatus based on the cantilever beam technique. It was found that the as-cast ZA27 alloy possesses high damping capacity with the value of 1.3 × 10^4 at 320Hz. After annealed at 250℃ for lh, the damping capacity decreases to 1.1 × 10^-3 and then remains constant even when the annealing time is increased to 4h. The microstructure of the as-cast ZA27 alloy consists of large dendrites of Al-rich PrimaG (x-phases, eutectoid (α + η) and nonequilibrium eutectic phases (α + η + ε). After annealing at 250℃ for lh, the e phase disappears due to dissolution into the matrix, and the spacing between the flakes of eutectoid increases. The further increase in the annealing time has little effect on the spacing. The damping mechanism of the alloy was discussed considering the thermoelastic damping and defect damping. The value of thermoelastic damping accounts only for 7%-8% in the overall damping in cantilever beam damping measurements and the damping capacity of the ZA27 alloy came mainly from defect damping.展开更多
The influence of corrosion on the microstructure of thixoformed and heat-treated ZA27 alloys was investigated. The microstructure of ZA27 alloy was affected by heat treatment. The process of electrochemical corrosion ...The influence of corrosion on the microstructure of thixoformed and heat-treated ZA27 alloys was investigated. The microstructure of ZA27 alloy was affected by heat treatment. The process of electrochemical corrosion occurs in both ZA27 alloys through the area of r/phase. According to the results of immersion test and electrochemical measurements, the corrosion rate of the thixoformed ZA27 alloy is at least 50% lower than that of the thixoformed and thermally processed alloy. This indicates the unfavourable influence of applied heat treatment (T4 regime) on the corrosion resistance of the thixoformed ZA27 alloy.展开更多
The microstructural evolution process of fined-grained ZA27 alloy during partial remelting has been investigated. The relationship between the as-cast and semi-solid microstructures has been discussed in particular. T...The microstructural evolution process of fined-grained ZA27 alloy during partial remelting has been investigated. The relationship between the as-cast and semi-solid microstructures has been discussed in particular. The results indicate that a semi-solid microstructure with small and spheroidal primary particles can be obtained when the ZA27 alloy is partially remelted. The microstructural evolution can be divided into four stages, the initial coarsening of the dendrites due to coalescence of dendrite arms, structural separation resulted from the melting of residual interdendritic eutectic, spheroidization due to the partial melting of solid particles and final coarsening attributed to the coalescence and Ostwald ripening. An equiaxed dendrite in the as-cast microstructure may evolve into one spheroidal particle in the semi-solid microsturucture after being partially remelted. The more equiaxed the dendrites in an as-cast microstructure are, the more spheroidal the solid particles in the semi-solid microstructure will be. Finer primary particles could be obtained if the alloy with finer as-cast microstructure was partially remelted. However, due to the coalescence effect, their sizes cannot be reduced further if the refined as-cast microstructure reached a certain extent.展开更多
The influences of minor amounts of scandium on the microstructure and mechanical properties of as-cast ZA27 alloy have been experimentally investigated. The experimental results show that as far as the Sc addition is ...The influences of minor amounts of scandium on the microstructure and mechanical properties of as-cast ZA27 alloy have been experimentally investigated. The experimental results show that as far as the Sc addition is individually concerned, the refinement result of the as-cast ZA27 alloy with 0.5wt.%Sc addition is comparatively better. After alloying with minor amounts of Sc, the coarse dendrites of the ZA27 alloy are refined and transformed into the uniform and small equiaxed grain microstructure; also the eutectics among the grain boundaries become finer. The test results of mechanical properties show that the tensile strength and hardness of the as-cast ZA27 alloy containing 0.5wt.%Sc approach 495 MPa and 120.2 HB, increase by 28.5% and 33.1%, respectively, compared with those of the ZA27 alloy with no addition of Sc element, while the elongation of the alloy is improved to 7.6% from 2.7%. The SEM, EDAX and XRD analyses show that in the ZA27 alloy, the trace element Sc combines with AI to form the square AI3Sc phase particles, which serve as heterogeneous nuclei, facilitating the refinement of the microstructure and the improvement of the mechanical properties of the alloy.展开更多
The aging characteristics of as-quenched microstructures of ZA-27 alloy and SiCp/ZA-27 composite(ZMCp) were investigated using SEM, EDS and TEM. The structure, morphology and size of sub-grains in primary dendrite in ...The aging characteristics of as-quenched microstructures of ZA-27 alloy and SiCp/ZA-27 composite(ZMCp) were investigated using SEM, EDS and TEM. The structure, morphology and size of sub-grains in primary dendrite in ZMCp continuously change during aging process. Little tiny spherical Zn-rich η phase distributes in the dendrite. Amount of transitional α′phase, well coherent with equilibrium αf phase, in SiCp-neighboring dendrite edge zone is less than that in dendrite center zone. Both eutectic and peritectic β phase transform into lamellar α and η phases, obeying [ 2113]η∥[110]α, and (002)α∥ (1 101)η. In the like-eutecticum of ZMCp, less amount of β phase and decomposition products are found. The size of α phase decomposed from peritectic β phase in ZMCp is obviously larger than that in the monolithic alloy. The lamella decomposition of β phase beside SiCp is evidently more rapid than that in the alloy. SiC particulates strongly accelerate neighboring β phase decomposition in aging process.展开更多
An investigation was performed on the effects of semi solid compression parameters,such as strain rate,compression temperature and heating time at these temperatures on deformation behaviors of two kinds of ZA27 allo...An investigation was performed on the effects of semi solid compression parameters,such as strain rate,compression temperature and heating time at these temperatures on deformation behaviors of two kinds of ZA27 alloys,one was modified by Zr and the other was unmodified.The results indicate that with the increasing of the strain,the stress of the modified composite first sharply increases to a peak value,then dramatically decreases to a plateau value,and again increases till the end of deformation.But for the unmodified,after being up to a peak value,the stress only decreases slowly.As the compression temperature or the heating time decreases,or the strain rate increases,the stress level and the cracking degree of these two kinds of alloys increase.Under the same deformation conditions,the stress level and the cracking degree of the unmodified alloy are higher than those of the modified one.But there is an exception that the stress level of the unmodified alloy is minimum and smaller than that of the modified one when deformed at the low temperature of 450℃.These phenomena were mainly discussed through analyzing the microstructures under different conditions and the deformation mechanisms at different deformation stages.展开更多
The microstructural evolution and phase transformations of mechanically stirred non-dendritic ZA27 alloy during partial remelting were studied by using scanning electron microscopy and X-ray diffraction technique.The ...The microstructural evolution and phase transformations of mechanically stirred non-dendritic ZA27 alloy during partial remelting were studied by using scanning electron microscopy and X-ray diffraction technique.The partial remelting temperature was 460℃ and lower than the stirring temperature of 465℃.So the microstructure with globular grains needed for semi-solid forming can not be obtained and the starting primary non-dendritic grains change in turn to connect non-dendritic grains, long chain-like structures and finally to coarsen connect grains.However,the small near-equiaxed grains between the primary non-dendritic grains are evolved into small globular grains gradually,some of which are also attached to the primary non-dendritic grains during the subsequent heating.The X-ray diffraction results show that a series of phase transformations, α+η+ε→β,η+β→L,β→α′+L,α+η+ε→α′ and α′→L, occur successively during this process.The main reason why the starting primary non-dendritic grains do not separate into the needed independent globular grains is that the reactions of η+β→L and α′→L do not occur or occurr incompletely in the layers used to connect the primary non-dendritic grains.展开更多
A ZA 27 alloy reinforced with Mn containing intermetallic compounds was prepared and its tribological behaviors were investigated. By adding Mn, RE, Ti and B into ZA 27 alloy, the test alloy (ZMJ) was fabricated by sa...A ZA 27 alloy reinforced with Mn containing intermetallic compounds was prepared and its tribological behaviors were investigated. By adding Mn, RE, Ti and B into ZA 27 alloy, the test alloy (ZMJ) was fabricated by sand casting. Microstructural analysis shows that considerable amount of Mn containing intermetallic compounds such as Al 5MnZn, Al 9(MnZn) 2 and Al 65 Mn(RE) 6Ti 4Zn 36 are formed. Compared to ZA 27, ZMJ shows better wear resistance, lower friction coefficient and lower temperature rise of worn surface under lubricated sliding condition. ZMJ also shows the lowest steady friction coefficient under dry friction condition. The wear resistance improvement of ZMJ is mainly attributed to the high hardness and good dispersion of these Mn containing intermetallic compounds. It is indicated that the intermetallic compounds play a dominant role in reducing the sever adhesive and abrasive wear of the ZA 27 alloy.展开更多
By metalloscopy,scanning electron microscope,X-ray diffraction,electron probe,salt water erosion and hot steam erosion,the microstructures and the aging resistance of zinc alloy ZA-27 with different contents of yttriu...By metalloscopy,scanning electron microscope,X-ray diffraction,electron probe,salt water erosion and hot steam erosion,the microstructures and the aging resistance of zinc alloy ZA-27 with different contents of yttrium were studied. The results show that with optimum addition of yttrium in the alloy ZA-27 the fine YAl_3 phase forms. The fine YAl_3 granules can act as the condensation nuclei of α phase and the number of the α phase′s nuclei increases greatly and the growth of the nuclei comes in for restrict during the crystallization and the alloy′s grains become fine and the segregation reduces. In addition,yttrium also combines with zinc and the fine dispersion Y-Zn phase forms which improves grain boundary conditions and the alloy′s aging resistance. But when the content of yttrium is overmuch some YAl_3 granules grow to be lumpy,so the fine and close texture of the alloy′s boundaries is damaged and the proportion of the interface among the phases increase which brings a decline in the alloy′s resistance to corrosion.展开更多
The influence of mixed RE with c Ce 45%(mass fraction) on the high temperature mechanical properties and microstructure of ZA 27 alloys was investigated. The results show that RE elements can react with ele...The influence of mixed RE with c Ce 45%(mass fraction) on the high temperature mechanical properties and microstructure of ZA 27 alloys was investigated. The results show that RE elements can react with elements Al, Zn, Cu etc. to form some complex compounds which have high hardness and hot hardness and can disperse in grain boundaries or between dendrite crystals, so that the alloy can be refined and the deformation of matrix and the movement of grain boundaries at high temperature are hindered. The appropriate addition amount of RE can result in increase of tensile strength by about 30% and hardness by 25% and only a little decrease of elongation, but impact toughness has been improved at 150 ℃. It is also found that the strength at room temperature changes little although the plasticity and impact toughness decrease slightly.展开更多
基金Project(Z2011-01-002) supported by the Nonferrous Metals Science Foundation of Hunan Nonferrous Metals Holding Group Co.Ltd.- Central South University,China
文摘The effects of heat treatment on the microstructure and mechanical properties of ZA27 alloy were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM) and mechanical characterization.The results indicated that the as-cast microstructure of the alloy was mainly composed of α,decomposed β,η and ε phases.After solid solution treatment at 365 ℃ for 1 h,α and η phases dissolved,and the microstructure of specimen was mainly composed of the supersaturated β phases.The phase decomposition of supersaturated ZA27 alloy is a two-stage phase transformation:the decomposition of the supersaturated β phase at the early stage of aging,and with the increase of aging time,ε phase decomposition through a four-phase transformation:α+ε→T '+ η.A good combination of high tensile elongation and reasonable strength can be achieved by suitable heat treatments.
文摘The effect of the mixed rare earths of Ce on the phase transformation in ascast ZA 27 alloy during compressive was investigated under 37 MPa and at 160 deg C by X-raydiffraction technique and SEM. The results showed that the as cast microstructure of ZA 27-RE alloyconsisted of a dendritic Al-rich alpha' surrounded by Zn-rich beta' phase, interdendritic epsilonphase and Zn-rich eta phase together with a complex Z phase which was a complex constitute compound,(RE,Cu)Al_5Zn_(16), dispersed in crystal interfaces or branch crystal interfaces and stable duringcompressive creep test at 160 deg C. The phase transformations of ZA 27-RE alloy, decomposition ofbeta' phase arid four transformation, were delayed by the addition of rare earths, also the lamellarstructure and the spheroidized structure in ZA 27-RE alloy were finer than in ZA 27 alloy duringcompressive creep test at 160 deg C at the same creep time, and the compressive creep resistance ofZA 27-RE alloy was higher than that of ZA 27 alloy.
基金for financial support underGrants No. GS992-A52-024 and No. ZS011-A25-048-C. One of the authors, Tijun Chen wishes to express his special thanks for the support of Development Program for Outstanding Young Teachers in Gansu University of Technology.
文摘The investigations were performed into the formation processes of liquid pools entrapped within solid grains of three ZA27 alloys, produced respectively by either grain refinement, or traditional permanent casting or mechanical stirring, during partial remelting at semisolid temperature of 460℃. The results show that the rapid coalescence of primary grains due to merging of secondary arms during the initial stage of partial remelting is the main cause for the formation of the entrapped liquid pools. This coalescence resulted in that a high quality of eutectics, especially the 77 phase, was entrapped within the grains, and then remelted to form liquid pools during the subsequent heating. In addition, the growth of the η phase decomposed from the primary α' phase and β phase and the subsequent remelting is another cause for the refined and permanent mould casting alloys. Furthermore, the agglomeration of the solid grains also resulted in the entrapment of liquid in the interior of grains.
基金the Natural Science Foundation of Shanxi Province!991054
文摘The morphology of ZA-27 alloy reinforced by RE compounds and its wear-resistance were studied. It is found that some nodular second phases appear due to the addition of Si and RE, which can disperse in grain boundaries or between dendrite crystals so that the alloy has been refined. Energy spectrum analysis of scanning electron microscope shows that the second phases are complex compounds containing RE, Al, Zn and Si. The micro- hardness test indicates that micro-hardness values of the compounds are higher than those of the matrix. The wear-resis tance of ZA-27 alloy reinforced by RE compounds is 4 times as high as that of ZA-27 alloy and also higher than that of ZA-27 alloy containing Si phase. The impact toughness of the alloy containing RE and Si is higher than that of the alloy containing Si.
文摘To improve the mechanical properties and wear resistance of ZA27 alloy, Si was introduced to the alloy, and the effect of Si alloying and T6 heat treatment on the microstructure, mechanical properties and wear resistance was investigated. The results show that with 0.55% Si, the microstructure of the alloy can be refined effectively, which leads to the increase of hardness. But the tensile strength and elongation decrease because Si undermines the integrity of the matrix. On the other hand, the dendrites are transformed into a desired α+η+(α+η)mixture with T6 heat treatment, which introduces a remarkable increase to the elongation and hardness of the alloy. The wear resistance of the ZA27 alloy with Si alloying is significantly better than that of the ZA27 alloy without Si. With the increase of Si addition, the wear resistance of the alloy firstly increases and then decreases.In the alloy without Si alloying, severe plastic deformation and large delamination were observed on the worn surface of the alloy. However, with the increase of Si, the main wear mechanism transformed to abrasive wear gradually. In addition, the T6 treatment can further improve the wear resistance of the alloy with Si alloying.
基金Funded by the Natural Science Foundation of Gansu Province(No.ZS021-A25-027-C)
文摘The effect of rectangle wave pulse current on solidification structure of ZA27 alloy was studied. The restdts show that the wave pattern relies on the frequency range of harmonic wave and the energy of pulse current within the frequency range of pulse current. Imposed pulse current could induce the solidification system to oscillate. The frequency range and the relevant energy distribution of pulse current exert an influence on the amount of atoms involved for forming critical nucleus, the surface states of dusters in melt, the oscillating state of melt on the surface of dusters, the active energy of atom diffusion , the frequnce response of the resonance of bulk melt and the absorbability of the solidification system to the external work. Rectangle wave pulse current involves rich harmonic waves ; the amplitudes of high order of harmonic waves are higher and reduce slowly, so it has a better effect on inoculation and modification.
文摘The structural evolution of ZA27 alloy modified by element Zr was studied during semi solid isothermal heat treatment, and its transformation mechanism was also discussed. The results indicate that the primary α phase changes from equiaxed grains to spherical grains gradually at semi solid temperature of 460 ℃. With increasing isothermal time, the eutectic between boundaries of α phase diffuses toward α phase, and the primary equiaxed grain arms merge and boundaries tend to disappear to form near particle grains. Further, the eutectic left on α boundaries melts to make the near particle grains separate, and form spherical structure at last. [
基金This work was supported by the National Natural Science Foundation of China(No.50075068)Scientific Research Project of Department of Education of Shaanxi Province(No.03JK132)Natural Science Foundation of Shaanxi Province(No.2003E1 11).
文摘ZA27 alloy was prepared by casting with permanent mold and then annealed at 250℃ for 1-4h. The damping capaciG of the alloy was measured using a testing apparatus based on the cantilever beam technique. It was found that the as-cast ZA27 alloy possesses high damping capacity with the value of 1.3 × 10^4 at 320Hz. After annealed at 250℃ for lh, the damping capacity decreases to 1.1 × 10^-3 and then remains constant even when the annealing time is increased to 4h. The microstructure of the as-cast ZA27 alloy consists of large dendrites of Al-rich PrimaG (x-phases, eutectoid (α + η) and nonequilibrium eutectic phases (α + η + ε). After annealing at 250℃ for lh, the e phase disappears due to dissolution into the matrix, and the spacing between the flakes of eutectoid increases. The further increase in the annealing time has little effect on the spacing. The damping mechanism of the alloy was discussed considering the thermoelastic damping and defect damping. The value of thermoelastic damping accounts only for 7%-8% in the overall damping in cantilever beam damping measurements and the damping capacity of the ZA27 alloy came mainly from defect damping.
基金The Ministry of Education and Science of the Republic of Serbia financially supported this work through the projects No.TR 35021 and OI 172005
文摘The influence of corrosion on the microstructure of thixoformed and heat-treated ZA27 alloys was investigated. The microstructure of ZA27 alloy was affected by heat treatment. The process of electrochemical corrosion occurs in both ZA27 alloys through the area of r/phase. According to the results of immersion test and electrochemical measurements, the corrosion rate of the thixoformed ZA27 alloy is at least 50% lower than that of the thixoformed and thermally processed alloy. This indicates the unfavourable influence of applied heat treatment (T4 regime) on the corrosion resistance of the thixoformed ZA27 alloy.
基金supported by the Development Program for Outstanding Young Teachers and Doctor Foundation of Lanzhou University of Technology
文摘The microstructural evolution process of fined-grained ZA27 alloy during partial remelting has been investigated. The relationship between the as-cast and semi-solid microstructures has been discussed in particular. The results indicate that a semi-solid microstructure with small and spheroidal primary particles can be obtained when the ZA27 alloy is partially remelted. The microstructural evolution can be divided into four stages, the initial coarsening of the dendrites due to coalescence of dendrite arms, structural separation resulted from the melting of residual interdendritic eutectic, spheroidization due to the partial melting of solid particles and final coarsening attributed to the coalescence and Ostwald ripening. An equiaxed dendrite in the as-cast microstructure may evolve into one spheroidal particle in the semi-solid microsturucture after being partially remelted. The more equiaxed the dendrites in an as-cast microstructure are, the more spheroidal the solid particles in the semi-solid microstructure will be. Finer primary particles could be obtained if the alloy with finer as-cast microstructure was partially remelted. However, due to the coalescence effect, their sizes cannot be reduced further if the refined as-cast microstructure reached a certain extent.
基金financially supported by the Natural Science Foundation of Liaoning Province(No:20072043)
文摘The influences of minor amounts of scandium on the microstructure and mechanical properties of as-cast ZA27 alloy have been experimentally investigated. The experimental results show that as far as the Sc addition is individually concerned, the refinement result of the as-cast ZA27 alloy with 0.5wt.%Sc addition is comparatively better. After alloying with minor amounts of Sc, the coarse dendrites of the ZA27 alloy are refined and transformed into the uniform and small equiaxed grain microstructure; also the eutectics among the grain boundaries become finer. The test results of mechanical properties show that the tensile strength and hardness of the as-cast ZA27 alloy containing 0.5wt.%Sc approach 495 MPa and 120.2 HB, increase by 28.5% and 33.1%, respectively, compared with those of the ZA27 alloy with no addition of Sc element, while the elongation of the alloy is improved to 7.6% from 2.7%. The SEM, EDAX and XRD analyses show that in the ZA27 alloy, the trace element Sc combines with AI to form the square AI3Sc phase particles, which serve as heterogeneous nuclei, facilitating the refinement of the microstructure and the improvement of the mechanical properties of the alloy.
基金Project(03G52047) supported by the Aviation Science Foundation, China
文摘The aging characteristics of as-quenched microstructures of ZA-27 alloy and SiCp/ZA-27 composite(ZMCp) were investigated using SEM, EDS and TEM. The structure, morphology and size of sub-grains in primary dendrite in ZMCp continuously change during aging process. Little tiny spherical Zn-rich η phase distributes in the dendrite. Amount of transitional α′phase, well coherent with equilibrium αf phase, in SiCp-neighboring dendrite edge zone is less than that in dendrite center zone. Both eutectic and peritectic β phase transform into lamellar α and η phases, obeying [ 2113]η∥[110]α, and (002)α∥ (1 101)η. In the like-eutecticum of ZMCp, less amount of β phase and decomposition products are found. The size of α phase decomposed from peritectic β phase in ZMCp is obviously larger than that in the monolithic alloy. The lamella decomposition of β phase beside SiCp is evidently more rapid than that in the alloy. SiC particulates strongly accelerate neighboring β phase decomposition in aging process.
文摘An investigation was performed on the effects of semi solid compression parameters,such as strain rate,compression temperature and heating time at these temperatures on deformation behaviors of two kinds of ZA27 alloys,one was modified by Zr and the other was unmodified.The results indicate that with the increasing of the strain,the stress of the modified composite first sharply increases to a peak value,then dramatically decreases to a plateau value,and again increases till the end of deformation.But for the unmodified,after being up to a peak value,the stress only decreases slowly.As the compression temperature or the heating time decreases,or the strain rate increases,the stress level and the cracking degree of these two kinds of alloys increase.Under the same deformation conditions,the stress level and the cracking degree of the unmodified alloy are higher than those of the modified one.But there is an exception that the stress level of the unmodified alloy is minimum and smaller than that of the modified one when deformed at the low temperature of 450℃.These phenomena were mainly discussed through analyzing the microstructures under different conditions and the deformation mechanisms at different deformation stages.
文摘The microstructural evolution and phase transformations of mechanically stirred non-dendritic ZA27 alloy during partial remelting were studied by using scanning electron microscopy and X-ray diffraction technique.The partial remelting temperature was 460℃ and lower than the stirring temperature of 465℃.So the microstructure with globular grains needed for semi-solid forming can not be obtained and the starting primary non-dendritic grains change in turn to connect non-dendritic grains, long chain-like structures and finally to coarsen connect grains.However,the small near-equiaxed grains between the primary non-dendritic grains are evolved into small globular grains gradually,some of which are also attached to the primary non-dendritic grains during the subsequent heating.The X-ray diffraction results show that a series of phase transformations, α+η+ε→β,η+β→L,β→α′+L,α+η+ε→α′ and α′→L, occur successively during this process.The main reason why the starting primary non-dendritic grains do not separate into the needed independent globular grains is that the reactions of η+β→L and α′→L do not occur or occurr incompletely in the layers used to connect the primary non-dendritic grains.
文摘A ZA 27 alloy reinforced with Mn containing intermetallic compounds was prepared and its tribological behaviors were investigated. By adding Mn, RE, Ti and B into ZA 27 alloy, the test alloy (ZMJ) was fabricated by sand casting. Microstructural analysis shows that considerable amount of Mn containing intermetallic compounds such as Al 5MnZn, Al 9(MnZn) 2 and Al 65 Mn(RE) 6Ti 4Zn 36 are formed. Compared to ZA 27, ZMJ shows better wear resistance, lower friction coefficient and lower temperature rise of worn surface under lubricated sliding condition. ZMJ also shows the lowest steady friction coefficient under dry friction condition. The wear resistance improvement of ZMJ is mainly attributed to the high hardness and good dispersion of these Mn containing intermetallic compounds. It is indicated that the intermetallic compounds play a dominant role in reducing the sever adhesive and abrasive wear of the ZA 27 alloy.
文摘By metalloscopy,scanning electron microscope,X-ray diffraction,electron probe,salt water erosion and hot steam erosion,the microstructures and the aging resistance of zinc alloy ZA-27 with different contents of yttrium were studied. The results show that with optimum addition of yttrium in the alloy ZA-27 the fine YAl_3 phase forms. The fine YAl_3 granules can act as the condensation nuclei of α phase and the number of the α phase′s nuclei increases greatly and the growth of the nuclei comes in for restrict during the crystallization and the alloy′s grains become fine and the segregation reduces. In addition,yttrium also combines with zinc and the fine dispersion Y-Zn phase forms which improves grain boundary conditions and the alloy′s aging resistance. But when the content of yttrium is overmuch some YAl_3 granules grow to be lumpy,so the fine and close texture of the alloy′s boundaries is damaged and the proportion of the interface among the phases increase which brings a decline in the alloy′s resistance to corrosion.
文摘The influence of mixed RE with c Ce 45%(mass fraction) on the high temperature mechanical properties and microstructure of ZA 27 alloys was investigated. The results show that RE elements can react with elements Al, Zn, Cu etc. to form some complex compounds which have high hardness and hot hardness and can disperse in grain boundaries or between dendrite crystals, so that the alloy can be refined and the deformation of matrix and the movement of grain boundaries at high temperature are hindered. The appropriate addition amount of RE can result in increase of tensile strength by about 30% and hardness by 25% and only a little decrease of elongation, but impact toughness has been improved at 150 ℃. It is also found that the strength at room temperature changes little although the plasticity and impact toughness decrease slightly.