Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalyst...Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalysts need to be developed.Here,ZnIn2S4/SnS2 with a three-dimensional(3D)heterostructure was prepared by a hydrothermal method and its photocatalytic performance in Cr(VI)reduction was investigated.When the mass ratio of SnS2 to ZnIn2S4 is 1:10,the ZnIn2S4/SnS2 composite exhibits the highest photocatalytic activity with 100%efficiency for Cr(VI)(50 mg/L)reduction within 70 min under visible-light irradiation,which is much higher than those of pure ZnIn2S4 and SnS2.The enhanced charge separation and the light absorption have been confirmed from the photoluminescence and UV-vis absorption spectra to be the two reasons for the increased activity towards photocatalytic Cr(VI)reduction.In addition,after three cycles of testing,no obvious degradation is observed with the 3D heterostructured ZnIn2S4/SnS2,which maintains a good photocatalytic stability.展开更多
Photocatalytic H2 production and CO2 reduction have attracted considerable attention for clean energy development.In this work,we designed an efficient photocatalyst by integrating lamellar oxygen-doped carbon nitride...Photocatalytic H2 production and CO2 reduction have attracted considerable attention for clean energy development.In this work,we designed an efficient photocatalyst by integrating lamellar oxygen-doped carbon nitride(CNO)nanosheets into ZnIn2S4(ZIS)microflowers by a one-step hydrothermal method.A well-fitted 2D hierarchical hybrid heterostructure was fabricated.Under visible light irradiation,the ZIS@CNO composite with 40 wt%CNO(ZC 40%)showed the highest hydrogen evolution rate from water(188.4μmol·h-1),which was approximately 2.1 times higher than those of CNO and ZIS(88.6 and 90.2μmol·h-1,respectively).Furthermore,the selective CO production rates of ZC 40%(12.69μmol·h-1)were 2.2 and 14.0 times higher than those of ZIS(5.85μmol·h-1)and CNO(0.91μmol·h-1),respectively,and the CH4 production rate of ZC 40%was 1.18μmol·h-1.This enhanced photocatalytic activity of CNO@ZIS is due mainly to the formation of a heterostructure that can promote the transfer of photoinduced electrons and holes between CNO and ZIS,thereby efficiently avoiding recombination of electron-hole pairs.展开更多
The cubic In(OH)3/ZnIn2S4 heterostructures were successfully synthesized via a simple strategy of post-treatment of cubic ZnIn2S4(C-ZIS), and their structures and properties were characterized by X-ray diffraction(XRD...The cubic In(OH)3/ZnIn2S4 heterostructures were successfully synthesized via a simple strategy of post-treatment of cubic ZnIn2S4(C-ZIS), and their structures and properties were characterized by X-ray diffraction(XRD), UV-vis diffuse reflectance spectra(DRS), field emission scanning electron microscopy(FESEM) and transmission electron microscopy(TEM). According to the results, the tofu-like In(OH)3 semiconductor as a new crystal phase appeared in the matrix of C-ZIS and formed a In(OH)3/ZnIn2S4 heterostructure. Compared with pure C-ZIS, the heterostructure exhibits higher photocatalytic activity towards selective oxidation of benzyl alcohol under visible light. The In(OH)3/ZnIn2S4 heterostructure manifests the best and the highest photocatalytic performance via 18 h post-treatment, which achieved nearly 100% selectivity, 35.5%conversion and 34.5% yield. This is ascribed to the formation of In(OH)3/ZnIn2S4 heterostructure to promote the transfer of photogenerated electron-hole pairs and thus efficiently inhibits their recombination, leading to the longer lifetime of photo-induced carriers. Furthermore, a possible photocatalytic mechanism is proposed and discussed. Our current work could boost more interest in researching the semiconductor materials of ternary chalcogenides and enlarging the applications based on cubic ZnIn2S4 heterostructure as visible-light-driven photocatalyst.展开更多
In this work,we designed and prepared the novel TiO2@ZnIn2 S4 nano-sized hollow structure via templating method assisted by hydrothermal synthesis process.Its unique hollow structure and type-II heterojunction between...In this work,we designed and prepared the novel TiO2@ZnIn2 S4 nano-sized hollow structure via templating method assisted by hydrothermal synthesis process.Its unique hollow structure and type-II heterojunction between TiO2 hollow nanospheres and ZnIn2 S4 nanosheet can provide enough interior cavities and transfer paths for the light absorption and charge quick migration.The crystal structure,morphology and charges separation property were measured.The characterization results show that the hollow-structured Ti O2@ZnIn2 S4 was successfully prepared,and the optimal sample exhibited excellent photocatalytic hydrogen generation compared with TiO2/ZnIn2 S4 cluster exceeding by a factor of 1.1 under overall light irradiation.Specially,the detailed mechanism of the photocatalytic H2 evolution and charge carrier migration for the as-prepared TiO2@ZnIn2 S4 hollow nanosphere was also studied.展开更多
Hierarchical heterostructure photocatalysts with broad spectrum solar light utilization,particularly in the nearinfrared(NIR)region,are emerging classes of advanced photocatalytic materials for solar-driven CO2 conver...Hierarchical heterostructure photocatalysts with broad spectrum solar light utilization,particularly in the nearinfrared(NIR)region,are emerging classes of advanced photocatalytic materials for solar-driven CO2 conversion into value-added chemical feedstocks.Herein,a novel two-demensional/three-demensional(2 D/3 D)hierarchical composite is hydrothermally synthesized by assembling vertically-aligned ZnIn2 S4(ZIS)nanowall arrays on nitrogen-doped graphene foams(NGF).The prepared ZIS/NGF composite shows enhancement in photothermal conversion ability and selective CO2 capture as well as solar-driven CO2 photoreduction.At273 K and 1 atm,the ZIS/NGF composite with 1.0 wt%NGF achieves a comparably high CO2-to-N2 selectivity of 30.1,with an isosteric heat of CO2 adsorption of 48.2 kJ mol^-1.And in the absence of cocatalysts and sacrificial agents,the ZIS/NGF composite with cyclability converts CO2 into CH4,CO and CH3 OH under simulated solar light illumination,with the respective evolution rates about 9.1,3.5,and 5.9 times higher than that of the pristine ZIS.In-depth analysis using in-situ irradiated X-ray photoelectron spectroscopy(ISI-XPS)in conjunction with Kelvin probe measurements reveals the underlying charge transfer pathway and process from ZIS to NGF.展开更多
Constructing a Z-scheme is a significant approach to improve the separation of photogene rated carriers for effective organic pollutant degradation.Herein,a BiVO4/ZnIn2S4(BZ) Z-scheme composite was successfully synthe...Constructing a Z-scheme is a significant approach to improve the separation of photogene rated carriers for effective organic pollutant degradation.Herein,a BiVO4/ZnIn2S4(BZ) Z-scheme composite was successfully synthesized,and applied to photodegrade methyl orange(MO) irradiated by a LED lamp.Anchoring the BiVO4 on the ZnIn2S4 nanoparticles promoted the separation of photogenerated electronholes and broadened the light response range.The detailed characterizations,including surface morphology,elements valence state,and photocurrent performance,demonstrated that the enhanced separation of photogenerated carriers was the pivotal reason for the enhanced photocatalysis reaction.Benefiting from the excellent photocatalytic characteristics,the 5% mass ratio of BZ composite presented the highest MO degradation rate of 0.00997 min^-1,which was 1.9 and 10.3 times greater than the virgin ZnIn2S4 and BiVO4,respectively.Furthermore,the BZ hybrid materials indicated a well photo-stability in the four recycling tests.展开更多
Herein,a novel strategy was exploited to achieve the delamination of TiCMXene multilayers into ultrathin flakes by blossom of ZnInSmicroflowers via a one-pot solvothermal method.There is no need to peel off the MXene ...Herein,a novel strategy was exploited to achieve the delamination of TiCMXene multilayers into ultrathin flakes by blossom of ZnInSmicroflowers via a one-pot solvothermal method.There is no need to peel off the MXene bulk ahead of its combination with the semiconductor.The obtained ZnInS/TiCbinary composites were applied for visible-light-driven photocatalytic hydrogen production without noble metal cocatalyst,and the optimized sample exhibited a hydrogen-production efficiency of 978.7 μmol hgwith the corresponding apparent quantum efficiency of 24.2% at 420 nm,which was 2.7 times higher than bare ZnInS.Through the comprehensive analysis based on spectroscopy measurements,electrochemical techniques and energy band theory,such enhancement was mainly attributed to(1) the highly-exposed surface that was beneficial for the adequate exposure of reactive sites and(2)the intimate contact interface that favored the transfer of photogenerated carriers.This study provides a new way of thinking for synthesizing ultrathin MXene-based composite materials for noble-metal-free and highly-efficient photocatalysis applications.展开更多
基金the support of the National Natural Science Foundation of China (51702087 and 21673066)~~
文摘Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalysts need to be developed.Here,ZnIn2S4/SnS2 with a three-dimensional(3D)heterostructure was prepared by a hydrothermal method and its photocatalytic performance in Cr(VI)reduction was investigated.When the mass ratio of SnS2 to ZnIn2S4 is 1:10,the ZnIn2S4/SnS2 composite exhibits the highest photocatalytic activity with 100%efficiency for Cr(VI)(50 mg/L)reduction within 70 min under visible-light irradiation,which is much higher than those of pure ZnIn2S4 and SnS2.The enhanced charge separation and the light absorption have been confirmed from the photoluminescence and UV-vis absorption spectra to be the two reasons for the increased activity towards photocatalytic Cr(VI)reduction.In addition,after three cycles of testing,no obvious degradation is observed with the 3D heterostructured ZnIn2S4/SnS2,which maintains a good photocatalytic stability.
基金supported by the National Natural Science Foundation of China(21503096,21407067)the Natural Science Foundation of Educational Committee of Anhui Province(KJ2018A0387),ChinaProject of Anhui Province for Excellent Young Talents in Universities(gxyq2019029),China
文摘Photocatalytic H2 production and CO2 reduction have attracted considerable attention for clean energy development.In this work,we designed an efficient photocatalyst by integrating lamellar oxygen-doped carbon nitride(CNO)nanosheets into ZnIn2S4(ZIS)microflowers by a one-step hydrothermal method.A well-fitted 2D hierarchical hybrid heterostructure was fabricated.Under visible light irradiation,the ZIS@CNO composite with 40 wt%CNO(ZC 40%)showed the highest hydrogen evolution rate from water(188.4μmol·h-1),which was approximately 2.1 times higher than those of CNO and ZIS(88.6 and 90.2μmol·h-1,respectively).Furthermore,the selective CO production rates of ZC 40%(12.69μmol·h-1)were 2.2 and 14.0 times higher than those of ZIS(5.85μmol·h-1)and CNO(0.91μmol·h-1),respectively,and the CH4 production rate of ZC 40%was 1.18μmol·h-1.This enhanced photocatalytic activity of CNO@ZIS is due mainly to the formation of a heterostructure that can promote the transfer of photoinduced electrons and holes between CNO and ZIS,thereby efficiently avoiding recombination of electron-hole pairs.
基金supported by the Key Projects of Youth Natural Fund in Fujian Universities(JZ160414)the Natural Science Foundation of Fujian Province(2019J01247)
文摘The cubic In(OH)3/ZnIn2S4 heterostructures were successfully synthesized via a simple strategy of post-treatment of cubic ZnIn2S4(C-ZIS), and their structures and properties were characterized by X-ray diffraction(XRD), UV-vis diffuse reflectance spectra(DRS), field emission scanning electron microscopy(FESEM) and transmission electron microscopy(TEM). According to the results, the tofu-like In(OH)3 semiconductor as a new crystal phase appeared in the matrix of C-ZIS and formed a In(OH)3/ZnIn2S4 heterostructure. Compared with pure C-ZIS, the heterostructure exhibits higher photocatalytic activity towards selective oxidation of benzyl alcohol under visible light. The In(OH)3/ZnIn2S4 heterostructure manifests the best and the highest photocatalytic performance via 18 h post-treatment, which achieved nearly 100% selectivity, 35.5%conversion and 34.5% yield. This is ascribed to the formation of In(OH)3/ZnIn2S4 heterostructure to promote the transfer of photogenerated electron-hole pairs and thus efficiently inhibits their recombination, leading to the longer lifetime of photo-induced carriers. Furthermore, a possible photocatalytic mechanism is proposed and discussed. Our current work could boost more interest in researching the semiconductor materials of ternary chalcogenides and enlarging the applications based on cubic ZnIn2S4 heterostructure as visible-light-driven photocatalyst.
基金financially supported by the National Natural Science Foundation of China (No. U1862105)the Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2017JZ001 and 2018KJXX-008)+2 种基金the Fundamental Research Funds for the Central Universities (No. cxtd2017004)the Science and Technology Project of Henan Province (No. 182106000029)he Key Research and Development Program of Shaanxi Province (No. 2018ZDCXL-SF-02-04)
文摘In this work,we designed and prepared the novel TiO2@ZnIn2 S4 nano-sized hollow structure via templating method assisted by hydrothermal synthesis process.Its unique hollow structure and type-II heterojunction between TiO2 hollow nanospheres and ZnIn2 S4 nanosheet can provide enough interior cavities and transfer paths for the light absorption and charge quick migration.The crystal structure,morphology and charges separation property were measured.The characterization results show that the hollow-structured Ti O2@ZnIn2 S4 was successfully prepared,and the optimal sample exhibited excellent photocatalytic hydrogen generation compared with TiO2/ZnIn2 S4 cluster exceeding by a factor of 1.1 under overall light irradiation.Specially,the detailed mechanism of the photocatalytic H2 evolution and charge carrier migration for the as-prepared TiO2@ZnIn2 S4 hollow nanosphere was also studied.
基金supported by the National Natural Science Foundation of China (51961135303, 51932007, 21871217 and U1705251)the National Key Research and Development Program of China (2018YFB1502001)Innovative Research Funds of SKLWUT (2017-ZD-4)
文摘Hierarchical heterostructure photocatalysts with broad spectrum solar light utilization,particularly in the nearinfrared(NIR)region,are emerging classes of advanced photocatalytic materials for solar-driven CO2 conversion into value-added chemical feedstocks.Herein,a novel two-demensional/three-demensional(2 D/3 D)hierarchical composite is hydrothermally synthesized by assembling vertically-aligned ZnIn2 S4(ZIS)nanowall arrays on nitrogen-doped graphene foams(NGF).The prepared ZIS/NGF composite shows enhancement in photothermal conversion ability and selective CO2 capture as well as solar-driven CO2 photoreduction.At273 K and 1 atm,the ZIS/NGF composite with 1.0 wt%NGF achieves a comparably high CO2-to-N2 selectivity of 30.1,with an isosteric heat of CO2 adsorption of 48.2 kJ mol^-1.And in the absence of cocatalysts and sacrificial agents,the ZIS/NGF composite with cyclability converts CO2 into CH4,CO and CH3 OH under simulated solar light illumination,with the respective evolution rates about 9.1,3.5,and 5.9 times higher than that of the pristine ZIS.In-depth analysis using in-situ irradiated X-ray photoelectron spectroscopy(ISI-XPS)in conjunction with Kelvin probe measurements reveals the underlying charge transfer pathway and process from ZIS to NGF.
基金financial supports from the National Natural Science Foundation of China(Nos.51908485 and 51608468)the China Postdoctoral Science Foundation(No.2019T120194)the University Science and Technology Program Project of Hebei Provincial Department of Education(No.QN2018258)。
文摘Constructing a Z-scheme is a significant approach to improve the separation of photogene rated carriers for effective organic pollutant degradation.Herein,a BiVO4/ZnIn2S4(BZ) Z-scheme composite was successfully synthesized,and applied to photodegrade methyl orange(MO) irradiated by a LED lamp.Anchoring the BiVO4 on the ZnIn2S4 nanoparticles promoted the separation of photogenerated electronholes and broadened the light response range.The detailed characterizations,including surface morphology,elements valence state,and photocurrent performance,demonstrated that the enhanced separation of photogenerated carriers was the pivotal reason for the enhanced photocatalysis reaction.Benefiting from the excellent photocatalytic characteristics,the 5% mass ratio of BZ composite presented the highest MO degradation rate of 0.00997 min^-1,which was 1.9 and 10.3 times greater than the virgin ZnIn2S4 and BiVO4,respectively.Furthermore,the BZ hybrid materials indicated a well photo-stability in the four recycling tests.
基金supported by the National Natural Science Foundation of China (21972171)the Hubei Provincial Natural Science Foundation, China (2021CFA022)National Innovation and Entrepreneurship Training Program for College Students, SouthCentral Minzu University (202110524009)。
文摘Herein,a novel strategy was exploited to achieve the delamination of TiCMXene multilayers into ultrathin flakes by blossom of ZnInSmicroflowers via a one-pot solvothermal method.There is no need to peel off the MXene bulk ahead of its combination with the semiconductor.The obtained ZnInS/TiCbinary composites were applied for visible-light-driven photocatalytic hydrogen production without noble metal cocatalyst,and the optimized sample exhibited a hydrogen-production efficiency of 978.7 μmol hgwith the corresponding apparent quantum efficiency of 24.2% at 420 nm,which was 2.7 times higher than bare ZnInS.Through the comprehensive analysis based on spectroscopy measurements,electrochemical techniques and energy band theory,such enhancement was mainly attributed to(1) the highly-exposed surface that was beneficial for the adequate exposure of reactive sites and(2)the intimate contact interface that favored the transfer of photogenerated carriers.This study provides a new way of thinking for synthesizing ultrathin MXene-based composite materials for noble-metal-free and highly-efficient photocatalysis applications.