ZnO sub-millimeter crystals were synthesized by microwave heating from ZnO powders without any catalyst or transport agent. Zinc oxide raw materials were evaporated from the high-temperature zone in an enclosure and c...ZnO sub-millimeter crystals were synthesized by microwave heating from ZnO powders without any catalyst or transport agent. Zinc oxide raw materials were evaporated from the high-temperature zone in an enclosure and crystals were grown on the self-source substrate. The thermodynamics analysis method was used to estimate the partial pressure of gases in the chamber, which shows that the pressure of ZnO could be neglected entirely in the range of experiment temperature. The kinetics analysis was employed to estimate the growth rate in different conditions, which shows a remarkable temperature gradient and a high system temperature would enhance the growth rate. Optics photos reveal that these products are hexagon crystals with 0.2-0.3 mm in diameter and 0.5-1 mm in length. A vapor-solid mechanism is proposed to explain the growth process of ZnO crystals. The temperature distribution in microwave oven is mainly determined by properties of electric field and it is different from that of a conventional method.展开更多
Brillouin light scattering technique can be successfully used to determine the whole set of elastic and piezoelectric constants of a ZnO single crystal irradiated by different laser energy densities, into a micron ran...Brillouin light scattering technique can be successfully used to determine the whole set of elastic and piezoelectric constants of a ZnO single crystal irradiated by different laser energy densities, into a micron range (radiation layer thickness). It is found that the scattering intensity, the linewidth and the Brillouin scattering shift of acoustic phonons are all strongly dependent on laser energy density. Based on the sound propagation equations and these results, the directional dependences of the compressional and shear moduli of the irradiated ZnO sample in the (001) plane are investigated. It is found that under an appropriate laser condition, 248 nm KrF excimer laser irradiation can significantly improve the surface quality and increase the elastic properties of ZnO single crystal. This procedure has potential applications in the fabrication of ZnO-based surface acoustic wave and optic-electronic devices.展开更多
ZnO single crystals were grown by vapor phase reaction of Zno powder with active carbon powdei at an elevated temperature The typical crystals were colorless and transparent with maximum size o4 0.1 mm in diameter and...ZnO single crystals were grown by vapor phase reaction of Zno powder with active carbon powdei at an elevated temperature The typical crystals were colorless and transparent with maximum size o4 0.1 mm in diameter and 25 mm in length, The gas-sensing characteristics of Na+-doped anc undoped single crystals were investigated in 1 %H2. Co and CH, in air between 1 50 and 600℃. It was found that the undoped ZnO single crystals showed little gas sensitivity in air. and Na+-doping can greatly enhance the senstivity by increasing the resistivities. The maximum sensitivity of the samples is 22 (Ra/ Rg) for H2. 1 2 for CO and 4 for CH4展开更多
This work demonstrates the realization of a lasing in scattering media,which contains dispersive solution of Zn O nanoparticles(NPs) and laser dye 4-dicyanomethylene-2-methyle-6-(p-dimethylaminostyryl)-4H-pyran(...This work demonstrates the realization of a lasing in scattering media,which contains dispersive solution of Zn O nanoparticles(NPs) and laser dye 4-dicyanomethylene-2-methyle-6-(p-dimethylaminostyryl)-4H-pyran(DCM) in negative liquid crystals(LCs) that was injected into a cell.The lasing intensity of the dye-doped negative LC laser can be tuned from low to high if the NPs concentration is increased.The tunability of the laser is attributable to the clusters-sensitive feature in effective refractive index of the negative LCs.Such a tunable negative liquid crystal laser can be used in the fabrication of new optical sources,optical communication,and liquid crystal laser displays.展开更多
Zinc oxide hexagonal tubular crystals were synthesized by direct microwave heating from ZnO powders within 5 min without any metal catalysts or transport agents. ZnO source materials were evaporated from the high-temp...Zinc oxide hexagonal tubular crystals were synthesized by direct microwave heating from ZnO powders within 5 min without any metal catalysts or transport agents. ZnO source materials were evaporated from the high-temperature zone in an enclosure, and crystals were grown on the self-source substrate in an appropriate condition. The ZnO vapor formed in the high-temperature zone can deposit and grow on the powders located in the low-temperature zone to form crystals. The scanning electron microscopy (SEM) reveals that these products are hexagonal tube crystals with 80 ~rn in diameter and 250 μm in length, having a well faceted end and side surface. A possible growth mechanism and the influence of reaction temperature on the formation of crystalline ZnO hexagonal tubes were presented. The photoluminescence (PL) exhibits strong ultraviolet emission at room temperature, indicating the potential applications in short-wave light-emitting photonic devices.展开更多
This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250kHz. For a linearly polarize...This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250kHz. For a linearly polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was promoted. The period of self-organization structures is about 180 nm. The grating orientation is adjusted by the laser polarization direction. A long range Bragglike grating is formed by moving the sample at a speed of 10μm/s. For a circularly polarized laser beam, uniform spherical nanoparticles were formed as a result of Coulomb explosion during the interaction of near-infrared laser with ZnO crystal.展开更多
Dielectric relaxation and charge transport induced by electron hopping in ZnO single crystal are measured by using a novocontrol broadband dielectric spectrometer. Typical Debye-like dielectric relaxation originating ...Dielectric relaxation and charge transport induced by electron hopping in ZnO single crystal are measured by using a novocontrol broadband dielectric spectrometer. Typical Debye-like dielectric relaxation originating from electronic hopping between electronic traps and conductive band in surface Schottky barrier region is observed for ZnO single crystal-Au electrode system. However, after insulation of ZnO single crystal by heat treatment in rich oxygen atmosphere, dielectric relaxation and alternating current conductance are observed simultaneously in the dielectric spectra, implying that dielectric relaxation and charge transport can be induced simultaneously by electronic hopping at high temperature in an ordered system. The intrinsic correlation between local dielectric relaxation and long range charge transport offers us a new method to explore complicated dielectrics.展开更多
We investigate the magnesium(Mg) incorporation efficiencies in MgxZn1-xO films on c-plane Zn-face ZnO substrates by using metalorganic chemical vapor deposition(MOCVD) technique. In order to deposit high quality M...We investigate the magnesium(Mg) incorporation efficiencies in MgxZn1-xO films on c-plane Zn-face ZnO substrates by using metalorganic chemical vapor deposition(MOCVD) technique. In order to deposit high quality MgxZn1-xO films,atomically smooth epi-ready surfaces of the hydrothermal grown ZnO substrates are achieved by thermal annealing in O2 atmosphere and characterized by atomic force microscope(AFM). The AFM, scanning electron microscope(SEM),and x-ray diffraction(XRD) studies demonstrate that the MgxZn1-xO films each have flat surface and hexagonal wurtzite structure without phase segregation at up to Mg content of 34.4%. The effects of the growth parameters including substrate temperature, reactor pressure and Ⅵ/Ⅱ ratio on Mg content in the films are investigated by XRD analysis based on Vegard's law, and confirmed by photo-luminescence spectra and x-ray photoelectron spectroscopy as well. It is indicated that high substrate temperature, low reactor pressure, and high Ⅵ/Ⅱratio are good for obtaining high Mg content.展开更多
The ionoluminescence (IL) spectra of a ZnO single crystal irradiated with 2.5?MeV H++ ions reveal that its intensity decreases with increasing the ion fluence, which indicates that the concentration of luminescen...The ionoluminescence (IL) spectra of a ZnO single crystal irradiated with 2.5?MeV H++ ions reveal that its intensity decreases with increasing the ion fluence, which indicates that the concentration of luminescence centers decreases with irradiation. The Gaussian decomposition results of the ZnO IL spectrum with a fluence of 1.77×10^11ions/cm^2 show that the spectrum is a superposition of energy levels centered at 1.75eV, 2.10eV, 3.12eV and 3.20eV. The four peaks are associated with electronic transitions from CB to VZnZn, CB to Oii, Znii to VB and the decay of self-trapped excitons, respectively. The results of single-exponential fitting demonstrate that different luminescent centers have different radiation resistance, which may explain why the emission decreases more slowly in the NBE band than in the DBE band. The agglomeration of larger point clusters accounts for the decrease in the concentration of luminescence centers and the increase in the concentration of non-luminescence centers, which indicates that the defect clusters induced by ion implantation act as nonradiative recombination centers and suppress light emission. The results of the photoluminescence spectra of a virgin ZnO single crystal and a ZnO single crystal irradiated with a fluence of 3.4××10^14ions/cm^2 show that compared with the virgin ZnO, the emission intensity of irradiated ZnO decreases by nearly two orders of magnitude, which demonstrates that the irradiation effect reduces radiative recombination and enhances nonradiative recombination. The conclusions of photoluminescence are consistent with the IL results.展开更多
ZnO single crystals were grown by the innovated hydrothermal method. The crystal surfaces were polished, and then studied by atom force microscope (AFM) and wet-chemical etching (WCE). It was found that the Zn pol...ZnO single crystals were grown by the innovated hydrothermal method. The crystal surfaces were polished, and then studied by atom force microscope (AFM) and wet-chemical etching (WCE). It was found that the Zn polar plane was smoother than O polar plane under the same polishing conditions. The etch pit density of Zn polar plane is 4.3×10^3 cm^-2, which is consistent with the previous report, while the density of etch pit of O polar plane is more than 103cm^-2. After annealing treatment, the density of etch pit of Zn plane reduces to 5.8×102 cm^2 and is superior to the current report. This investigation reveals that the high quality ZnO single crystals with fine Zn polar plane can be obtained by the innovated hydrothermal method.展开更多
The local structure distortion, the spin Hamiltonian (SH) parameters, and the electric fine structure of the ground state for Mn^2+ (3d^5) ion in ZnO crystals are systematically investigated, where spin-spin (SS...The local structure distortion, the spin Hamiltonian (SH) parameters, and the electric fine structure of the ground state for Mn^2+ (3d^5) ion in ZnO crystals are systematically investigated, where spin-spin (SS), spin-other-orbit (SOO) and orbit-orbit (OO) magnetic interactions, besides the well-known spin-orbit (SO) coupling, are taken into account for the first time, by using the complete diagonalization method. The theoretical results of the second-order zerofield splitting (ZFS) parameter D, the fourth-order ZFS parameter (a-F), the Zeeman g-factors: g// and g⊥, and the energy differences of the ground state: δ1 and δ2 for Mn^2+ in Mn^2+: ZnO are in good agreement with experimental measurements when the three O^2- ions below the Mn^2+ ion rotate by 1.085° away from the [111]-axis. Hence, the local structure distortion effect plays an important role in explaining the spectroscopic properties of Mn^2+ ions in Mn^2+: ZnO crystals. It is found for Mn^2+ ions in Mn^2+: ZnO crystals that although the SO mechanism is the most important one, the contributions to the SH parameters, made by other four mechanisms, i.e. SS, SOO, OO, and SO-SS-SOO-OO mechanisms, are significant and should not be omitted, especially for calculating ZFS parameter D.展开更多
In this paper, we investigate the laser irradiation of ZnO single crystals and its influence on photoluminescence. Our study shows that the photoluminescence of ZnO single crystals strongly depends on surface morpholo...In this paper, we investigate the laser irradiation of ZnO single crystals and its influence on photoluminescence. Our study shows that the photoluminescence of ZnO single crystals strongly depends on surface morphologies. The ultraviolet emissions of laser treated-ZnO under 200 mJ/cm^2 become stronger, whereas for those deteriorated by irradiation above 200 mJ/cm^2, the green emissions centred at 2.53 eV are significantly enhanced with a red-shift to 2.19 eV, probably due to the changes in the charge states of the defects. Enhanced yellow-green emissions are well resolved into four peaks at around 1.98, 2.19, 2.36, and 2.53 eV due to a shallow irradiation depth. Possible origins are proposed and discussed.展开更多
The subsolidus phase relations of the ternary system Zn O-Mo O3-Bi2O3 have been investigated by X-ray diffraction(XRD) analyses. The phase diagrams have been constructed. There are eight binary compounds and no tern...The subsolidus phase relations of the ternary system Zn O-Mo O3-Bi2O3 have been investigated by X-ray diffraction(XRD) analyses. The phase diagrams have been constructed. There are eight binary compounds and no ternary compound in the Zn O-Mo O3-Bi2O3 system. This system can be divided into nine three-phase regions. From the phase relations of Zn O-MoO 3-Bi2O3 system, the possible component regions for Zn O single crystal flux growth are Zn O-Zn3Mo2O9-Bi2 Mo O6, Zn O-Bi2 Mo O6-Bi26Mo10O69, Zn O-Bi26Mo10O69-Bi14 MoO 24, and Zn O-Bi14 Mo O24-Bi38 Zn O58.展开更多
Hydrothermal(HT)ZnO substrates were usually used as seeds for the vapor growth of ZnO crystals.In this work,ZnO bulk crystals were grown using the relatively low-cost GaN/AlOsubstrates as seeds by chemical vapor trans...Hydrothermal(HT)ZnO substrates were usually used as seeds for the vapor growth of ZnO crystals.In this work,ZnO bulk crystals were grown using the relatively low-cost GaN/AlOsubstrates as seeds by chemical vapor transport(CVT).With the increase of growth time,the dislocation densities in the crystal decreased from about 1×10^(6) to 6×10^(3) cm^(-2).The carrier concentration decreased from 1.24×10^(19) to 1.57×10^(17)cm^(-3),while the carrier mobility increased from 63.8 to 179 cm^(2)/(V·s).The optical transmittance in the VIS-NIR wavelength increased significantly in combination with the decreasing dislocation densities and impurity concentrations.The dislocation lines and related fast diffusion paths gradually decreased and disappeared in the late growth stage,and the crystal qualities were consequently improved.The experimental results show that the properties of as-grown ZnO crystals are comparable with bulk ZnO grown on the HT substrates to some extent.The GaN/Al_(2)O_(3) seeds may have a potential application value in the industrial production of ZnO single crystals.展开更多
ZnO single crystal was used as the substrate to study the effect of ZnO crystal plane polarity on the morphology and structure of CH_3NH_3PbI_3(MAPbI_3) perovskite film and carrier transport properties,which is mean...ZnO single crystal was used as the substrate to study the effect of ZnO crystal plane polarity on the morphology and structure of CH_3NH_3PbI_3(MAPbI_3) perovskite film and carrier transport properties,which is meaningful for improving ZnO-based perovskite solar cell. It is found that perovskite thin film has small grain size(about 190 nm) and high coverage rate on the O-face of ZnO single crystal,and the dominant exposed crystal plane of perovskite film is(110) plane. While the MAPbI_3 thin film has large grain size(about 1.03 μm) and low coverage rate on the Zn-face,and the(022) plane is dominantly exposed for the perovskite film. The injection of photogenerated electrons from MAPbI_3 film into the O-face of ZnO single crystal is faster and more effective than that to Zn-face. It is supposed that O-face is more suitable for ZnO single crystal based perovskite cell fabrication than Zn-face.展开更多
We investigate theoretically the spectral shift of the high-order harmonic generation(HHG)in ZnO driven by a combined laser field by solving the two-band semiconductor Bloch equations(SBEs)in the velocity gauge.The co...We investigate theoretically the spectral shift of the high-order harmonic generation(HHG)in ZnO driven by a combined laser field by solving the two-band semiconductor Bloch equations(SBEs)in the velocity gauge.The combined laser field is synthesized by a fundamental laser pulse and its seventh-frequency laser pulse.When the seventh-frequency laser pulse is added to the rising or falling parts of the fundamental laser field,we find that the spectral blueshift or redshift appears,which is due to the unequal contribution of the rising and falling parts in the fundamental laser field to the harmonics.By analyzing the time-dependent conduction band population in k space,we found that,in addition to the tunneling ionization channel,there is also the resonant electron injection channels which is induced by the seventh-frequency laser pulse.The harmonics generated by the different channels show the spectral redshift or the spectral blueshift,respectively.Through analyzing the k-integrated transient conduction band population of the electrons from different channels,we found that if there is a certain delay in the process of the electron excitation,it will lead to the delay in the harmonic emission,which results in the spectral redshift of the harmonics.展开更多
A facet-dependent electrochemiluminescence (ECL) behavior was found for nanostructured ZnO with different dominant exposing planes.The ECL spectrum of nanostructured ZnO was recorded by the emission scan mode with a f...A facet-dependent electrochemiluminescence (ECL) behavior was found for nanostructured ZnO with different dominant exposing planes.The ECL spectrum of nanostructured ZnO was recorded by the emission scan mode with a fluorescence spectrometer and applied to investigate the difference of surface state for different crystal planes.Electronic structure calculations based on density functional theory were used to study the effect of crystal plane on the band structure and density of states.It revealed that the ECL emission was originated primarily from the recombination of electrons from Zn 4s and the hole from O 2p,which could be utilized to study the physical and chemical properties of surface structures of as-prepared nanostructured ZnO.A physical model was suggested to elucidate the differences of ECL spectra.A concept was proposed that the energy released as photons during ECL process of nanocrystalline semiconductor materials will be correlated with the energy level of active sites located at different crystal planes.展开更多
Zinc oxide(ZnO) has a wide band gap, high stability and a high thermal operating range that makes it a suitable material as a semiconductor for fabricating light emitting diodes(LEDs) and laser diodes, photodiodes...Zinc oxide(ZnO) has a wide band gap, high stability and a high thermal operating range that makes it a suitable material as a semiconductor for fabricating light emitting diodes(LEDs) and laser diodes, photodiodes, power diodes and other semiconductor devices. Recently, a new crystal growth for producing ZnO crystal boules was developed, which was physical vapor transport(PVT), at temperatures exceeding 1500 ?C under a certain system pressure. ZnO crystal wafers in sizes up to 50 mm in diameter were produced. The conditions of ZnO crystal growth, growth rate and the quality of ZnO crystal were analyzed. Results from crystal growth and material characterization are presented and discussed. Our research results suggest that the novel crystal growth technique is a viable production technique for producing ZnO crystals and substrates for semiconductor device applications.展开更多
Mechanoredox chemistry that uses highly polarized piezoelectric materials as mechanoredox catalysts to promote redox reactions has emerged recently.It provides an alternative approach alongside the existing polymeriza...Mechanoredox chemistry that uses highly polarized piezoelectric materials as mechanoredox catalysts to promote redox reactions has emerged recently.It provides an alternative approach alongside the existing polymerization methods.Despite recent accomplishments,determining the quantitative relationship between the structure of ZnO and its catalytic performance for polymerization is still challenging.Herein,we prepared various ZnO crystals with different polar facets ratios to achieve efficient mechanically induced reversible addition-fragmentation chain transfer polymerization(mechano-RAFT).ZnO prepared from Zn(NO3)2 showed a high polar facet ratio of 1.66 and offered the highest catalytic activity among all ZnO samples.A near-quantitative initiator efficiency of 99.5%and narrow molecular weight distribution were achieved for the polymerization of n-butyl acrylate.Furthermore,the high chain-end fidelity and chain extension capability were also evidenced by MALDI-TOF MS and GPC analysis.This work highlighted the significant contribution of polar facets in ZnO to its catalytic activity and will guide the design of mechanoredox catalysis with superior catalytic performance in the future.展开更多
基金Funded by the National Natural Science Foundation of China (No.50472043)the Program for New Century Excellent Talents in University (No.NCET-06-0658)
文摘ZnO sub-millimeter crystals were synthesized by microwave heating from ZnO powders without any catalyst or transport agent. Zinc oxide raw materials were evaporated from the high-temperature zone in an enclosure and crystals were grown on the self-source substrate. The thermodynamics analysis method was used to estimate the partial pressure of gases in the chamber, which shows that the pressure of ZnO could be neglected entirely in the range of experiment temperature. The kinetics analysis was employed to estimate the growth rate in different conditions, which shows a remarkable temperature gradient and a high system temperature would enhance the growth rate. Optics photos reveal that these products are hexagon crystals with 0.2-0.3 mm in diameter and 0.5-1 mm in length. A vapor-solid mechanism is proposed to explain the growth process of ZnO crystals. The temperature distribution in microwave oven is mainly determined by properties of electric field and it is different from that of a conventional method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974009)
文摘Brillouin light scattering technique can be successfully used to determine the whole set of elastic and piezoelectric constants of a ZnO single crystal irradiated by different laser energy densities, into a micron range (radiation layer thickness). It is found that the scattering intensity, the linewidth and the Brillouin scattering shift of acoustic phonons are all strongly dependent on laser energy density. Based on the sound propagation equations and these results, the directional dependences of the compressional and shear moduli of the irradiated ZnO sample in the (001) plane are investigated. It is found that under an appropriate laser condition, 248 nm KrF excimer laser irradiation can significantly improve the surface quality and increase the elastic properties of ZnO single crystal. This procedure has potential applications in the fabrication of ZnO-based surface acoustic wave and optic-electronic devices.
文摘ZnO single crystals were grown by vapor phase reaction of Zno powder with active carbon powdei at an elevated temperature The typical crystals were colorless and transparent with maximum size o4 0.1 mm in diameter and 25 mm in length, The gas-sensing characteristics of Na+-doped anc undoped single crystals were investigated in 1 %H2. Co and CH, in air between 1 50 and 600℃. It was found that the undoped ZnO single crystals showed little gas sensitivity in air. and Na+-doping can greatly enhance the senstivity by increasing the resistivities. The maximum sensitivity of the samples is 22 (Ra/ Rg) for H2. 1 2 for CO and 4 for CH4
基金Project supported by the Doctoral Science Research Start-up Funding of Guizhou Normal University,China(Grant No.11904-0514162)the National Natural Science Foundation of China(Grant No.11474021)
文摘This work demonstrates the realization of a lasing in scattering media,which contains dispersive solution of Zn O nanoparticles(NPs) and laser dye 4-dicyanomethylene-2-methyle-6-(p-dimethylaminostyryl)-4H-pyran(DCM) in negative liquid crystals(LCs) that was injected into a cell.The lasing intensity of the dye-doped negative LC laser can be tuned from low to high if the NPs concentration is increased.The tunability of the laser is attributable to the clusters-sensitive feature in effective refractive index of the negative LCs.Such a tunable negative liquid crystal laser can be used in the fabrication of new optical sources,optical communication,and liquid crystal laser displays.
基金supported by the National Natural Science Foundation of China (No.50472043)the Program for New Century Excellent Talents in Chinese Universities (NCET-06-0658)
文摘Zinc oxide hexagonal tubular crystals were synthesized by direct microwave heating from ZnO powders within 5 min without any metal catalysts or transport agents. ZnO source materials were evaporated from the high-temperature zone in an enclosure, and crystals were grown on the self-source substrate in an appropriate condition. The ZnO vapor formed in the high-temperature zone can deposit and grow on the powders located in the low-temperature zone to form crystals. The scanning electron microscopy (SEM) reveals that these products are hexagonal tube crystals with 80 ~rn in diameter and 250 μm in length, having a well faceted end and side surface. A possible growth mechanism and the influence of reaction temperature on the formation of crystalline ZnO hexagonal tubes were presented. The photoluminescence (PL) exhibits strong ultraviolet emission at room temperature, indicating the potential applications in short-wave light-emitting photonic devices.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No T0104)the Shanghai Nano-technology Promotion Center and Science & Technology of Shanghai Municipality (Grant No 0652nm005)Innovation Fund of Shanghai University,China
文摘This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250kHz. For a linearly polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was promoted. The period of self-organization structures is about 180 nm. The grating orientation is adjusted by the laser polarization direction. A long range Bragglike grating is formed by moving the sample at a speed of 10μm/s. For a circularly polarized laser beam, uniform spherical nanoparticles were formed as a result of Coulomb explosion during the interaction of near-infrared laser with ZnO crystal.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.51277138 and 50972118)the Scientific Research Plan of the Education Department of Shaanxi Province,China (Grant No.12JK0434)the Doctoral Scientific Research Foundation of Xi’an Polytechnic University,China (Grant No.BS0814)
文摘Dielectric relaxation and charge transport induced by electron hopping in ZnO single crystal are measured by using a novocontrol broadband dielectric spectrometer. Typical Debye-like dielectric relaxation originating from electronic hopping between electronic traps and conductive band in surface Schottky barrier region is observed for ZnO single crystal-Au electrode system. However, after insulation of ZnO single crystal by heat treatment in rich oxygen atmosphere, dielectric relaxation and alternating current conductance are observed simultaneously in the dielectric spectra, implying that dielectric relaxation and charge transport can be induced simultaneously by electronic hopping at high temperature in an ordered system. The intrinsic correlation between local dielectric relaxation and long range charge transport offers us a new method to explore complicated dielectrics.
基金supported by the National Natural Science Foundation of China(Grant No.61474121)and the Major Scientific Project of Fujian Province,China(Grant No.2014NZ0002-2)
文摘We investigate the magnesium(Mg) incorporation efficiencies in MgxZn1-xO films on c-plane Zn-face ZnO substrates by using metalorganic chemical vapor deposition(MOCVD) technique. In order to deposit high quality MgxZn1-xO films,atomically smooth epi-ready surfaces of the hydrothermal grown ZnO substrates are achieved by thermal annealing in O2 atmosphere and characterized by atomic force microscope(AFM). The AFM, scanning electron microscope(SEM),and x-ray diffraction(XRD) studies demonstrate that the MgxZn1-xO films each have flat surface and hexagonal wurtzite structure without phase segregation at up to Mg content of 34.4%. The effects of the growth parameters including substrate temperature, reactor pressure and Ⅵ/Ⅱ ratio on Mg content in the films are investigated by XRD analysis based on Vegard's law, and confirmed by photo-luminescence spectra and x-ray photoelectron spectroscopy as well. It is indicated that high substrate temperature, low reactor pressure, and high Ⅵ/Ⅱratio are good for obtaining high Mg content.
文摘The ionoluminescence (IL) spectra of a ZnO single crystal irradiated with 2.5?MeV H++ ions reveal that its intensity decreases with increasing the ion fluence, which indicates that the concentration of luminescence centers decreases with irradiation. The Gaussian decomposition results of the ZnO IL spectrum with a fluence of 1.77×10^11ions/cm^2 show that the spectrum is a superposition of energy levels centered at 1.75eV, 2.10eV, 3.12eV and 3.20eV. The four peaks are associated with electronic transitions from CB to VZnZn, CB to Oii, Znii to VB and the decay of self-trapped excitons, respectively. The results of single-exponential fitting demonstrate that different luminescent centers have different radiation resistance, which may explain why the emission decreases more slowly in the NBE band than in the DBE band. The agglomeration of larger point clusters accounts for the decrease in the concentration of luminescence centers and the increase in the concentration of non-luminescence centers, which indicates that the defect clusters induced by ion implantation act as nonradiative recombination centers and suppress light emission. The results of the photoluminescence spectra of a virgin ZnO single crystal and a ZnO single crystal irradiated with a fluence of 3.4××10^14ions/cm^2 show that compared with the virgin ZnO, the emission intensity of irradiated ZnO decreases by nearly two orders of magnitude, which demonstrates that the irradiation effect reduces radiative recombination and enhances nonradiative recombination. The conclusions of photoluminescence are consistent with the IL results.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of SciencesSpecial Project on Science and Technology of Fujian Province (2005HZ1023)+4 种基金Knowledge Innovation Project of the Chinese Academy of Sciences (KJCX2.YW.W01)Outstanding Youth Fund (50625205)Youth Talent of Fujian Province (2006F3140)Fujian Engineering Research Center for Optoelectronic Materials (2007K02, 2005DC105003)the National Key Project of China for Basic Research (2007CB936703)
文摘ZnO single crystals were grown by the innovated hydrothermal method. The crystal surfaces were polished, and then studied by atom force microscope (AFM) and wet-chemical etching (WCE). It was found that the Zn polar plane was smoother than O polar plane under the same polishing conditions. The etch pit density of Zn polar plane is 4.3×10^3 cm^-2, which is consistent with the previous report, while the density of etch pit of O polar plane is more than 103cm^-2. After annealing treatment, the density of etch pit of Zn plane reduces to 5.8×102 cm^2 and is superior to the current report. This investigation reveals that the high quality ZnO single crystals with fine Zn polar plane can be obtained by the innovated hydrothermal method.
基金supported by the Science and Technology Foundation of Shaanxi Province,China (Grant No 2006K04-G29)the National Defense Foundation of China (Grant No EP060302)the Key Research Foundation of Baoji University of Arts and Sciences,China (Grant No ZK0842)
文摘The local structure distortion, the spin Hamiltonian (SH) parameters, and the electric fine structure of the ground state for Mn^2+ (3d^5) ion in ZnO crystals are systematically investigated, where spin-spin (SS), spin-other-orbit (SOO) and orbit-orbit (OO) magnetic interactions, besides the well-known spin-orbit (SO) coupling, are taken into account for the first time, by using the complete diagonalization method. The theoretical results of the second-order zerofield splitting (ZFS) parameter D, the fourth-order ZFS parameter (a-F), the Zeeman g-factors: g// and g⊥, and the energy differences of the ground state: δ1 and δ2 for Mn^2+ in Mn^2+: ZnO are in good agreement with experimental measurements when the three O^2- ions below the Mn^2+ ion rotate by 1.085° away from the [111]-axis. Hence, the local structure distortion effect plays an important role in explaining the spectroscopic properties of Mn^2+ ions in Mn^2+: ZnO crystals. It is found for Mn^2+ ions in Mn^2+: ZnO crystals that although the SO mechanism is the most important one, the contributions to the SH parameters, made by other four mechanisms, i.e. SS, SOO, OO, and SO-SS-SOO-OO mechanisms, are significant and should not be omitted, especially for calculating ZFS parameter D.
基金Project supported by the National Natural Science Foundation of China(Grant No.10974009)
文摘In this paper, we investigate the laser irradiation of ZnO single crystals and its influence on photoluminescence. Our study shows that the photoluminescence of ZnO single crystals strongly depends on surface morphologies. The ultraviolet emissions of laser treated-ZnO under 200 mJ/cm^2 become stronger, whereas for those deteriorated by irradiation above 200 mJ/cm^2, the green emissions centred at 2.53 eV are significantly enhanced with a red-shift to 2.19 eV, probably due to the changes in the charge states of the defects. Enhanced yellow-green emissions are well resolved into four peaks at around 1.98, 2.19, 2.36, and 2.53 eV due to a shallow irradiation depth. Possible origins are proposed and discussed.
基金supported by the National Natural Science Foundation of China(61474121,51302262 and 21203198)the Major Research plan of the National Natural Science Foundation of China(No.91333207)the Natural Science Foundation of Fujian Province(2012J05033)
文摘The subsolidus phase relations of the ternary system Zn O-Mo O3-Bi2O3 have been investigated by X-ray diffraction(XRD) analyses. The phase diagrams have been constructed. There are eight binary compounds and no ternary compound in the Zn O-Mo O3-Bi2O3 system. This system can be divided into nine three-phase regions. From the phase relations of Zn O-MoO 3-Bi2O3 system, the possible component regions for Zn O single crystal flux growth are Zn O-Zn3Mo2O9-Bi2 Mo O6, Zn O-Bi2 Mo O6-Bi26Mo10O69, Zn O-Bi26Mo10O69-Bi14 MoO 24, and Zn O-Bi14 Mo O24-Bi38 Zn O58.
基金Funded by the National Natural Science Foundation of China(Nos.11905199,11904299,and U1930124)。
文摘Hydrothermal(HT)ZnO substrates were usually used as seeds for the vapor growth of ZnO crystals.In this work,ZnO bulk crystals were grown using the relatively low-cost GaN/AlOsubstrates as seeds by chemical vapor transport(CVT).With the increase of growth time,the dislocation densities in the crystal decreased from about 1×10^(6) to 6×10^(3) cm^(-2).The carrier concentration decreased from 1.24×10^(19) to 1.57×10^(17)cm^(-3),while the carrier mobility increased from 63.8 to 179 cm^(2)/(V·s).The optical transmittance in the VIS-NIR wavelength increased significantly in combination with the decreasing dislocation densities and impurity concentrations.The dislocation lines and related fast diffusion paths gradually decreased and disappeared in the late growth stage,and the crystal qualities were consequently improved.The experimental results show that the properties of as-grown ZnO crystals are comparable with bulk ZnO grown on the HT substrates to some extent.The GaN/Al_(2)O_(3) seeds may have a potential application value in the industrial production of ZnO single crystals.
基金supported by the National Natural Science Foundation of China(Nos.91333207,61427901 and U1505252)
文摘ZnO single crystal was used as the substrate to study the effect of ZnO crystal plane polarity on the morphology and structure of CH_3NH_3PbI_3(MAPbI_3) perovskite film and carrier transport properties,which is meaningful for improving ZnO-based perovskite solar cell. It is found that perovskite thin film has small grain size(about 190 nm) and high coverage rate on the O-face of ZnO single crystal,and the dominant exposed crystal plane of perovskite film is(110) plane. While the MAPbI_3 thin film has large grain size(about 1.03 μm) and low coverage rate on the Zn-face,and the(022) plane is dominantly exposed for the perovskite film. The injection of photogenerated electrons from MAPbI_3 film into the O-face of ZnO single crystal is faster and more effective than that to Zn-face. It is supposed that O-face is more suitable for ZnO single crystal based perovskite cell fabrication than Zn-face.
基金the National Natural Science Foundation of China(Grant Nos.12074142 and 11904122).
文摘We investigate theoretically the spectral shift of the high-order harmonic generation(HHG)in ZnO driven by a combined laser field by solving the two-band semiconductor Bloch equations(SBEs)in the velocity gauge.The combined laser field is synthesized by a fundamental laser pulse and its seventh-frequency laser pulse.When the seventh-frequency laser pulse is added to the rising or falling parts of the fundamental laser field,we find that the spectral blueshift or redshift appears,which is due to the unequal contribution of the rising and falling parts in the fundamental laser field to the harmonics.By analyzing the time-dependent conduction band population in k space,we found that,in addition to the tunneling ionization channel,there is also the resonant electron injection channels which is induced by the seventh-frequency laser pulse.The harmonics generated by the different channels show the spectral redshift or the spectral blueshift,respectively.Through analyzing the k-integrated transient conduction band population of the electrons from different channels,we found that if there is a certain delay in the process of the electron excitation,it will lead to the delay in the harmonic emission,which results in the spectral redshift of the harmonics.
基金supported by the National Natural Science Foundation of China (21075058,21005036,21127006)Startup Research Fund of Ministry of Education of China,Higher Educational Science and Technology Program of Shandong (J10LB12)+1 种基金Natural Science Foundation(ZR2010BZ004,JQ201106)Tai-Shan Scholar Research Fund of Shandong Province
文摘A facet-dependent electrochemiluminescence (ECL) behavior was found for nanostructured ZnO with different dominant exposing planes.The ECL spectrum of nanostructured ZnO was recorded by the emission scan mode with a fluorescence spectrometer and applied to investigate the difference of surface state for different crystal planes.Electronic structure calculations based on density functional theory were used to study the effect of crystal plane on the band structure and density of states.It revealed that the ECL emission was originated primarily from the recombination of electrons from Zn 4s and the hole from O 2p,which could be utilized to study the physical and chemical properties of surface structures of as-prepared nanostructured ZnO.A physical model was suggested to elucidate the differences of ECL spectra.A concept was proposed that the energy released as photons during ECL process of nanocrystalline semiconductor materials will be correlated with the energy level of active sites located at different crystal planes.
基金Project supported by the Special Scientific Research Plan Project of Shaanxi Provincial Education Department,China(No.08JK376)
文摘Zinc oxide(ZnO) has a wide band gap, high stability and a high thermal operating range that makes it a suitable material as a semiconductor for fabricating light emitting diodes(LEDs) and laser diodes, photodiodes, power diodes and other semiconductor devices. Recently, a new crystal growth for producing ZnO crystal boules was developed, which was physical vapor transport(PVT), at temperatures exceeding 1500 ?C under a certain system pressure. ZnO crystal wafers in sizes up to 50 mm in diameter were produced. The conditions of ZnO crystal growth, growth rate and the quality of ZnO crystal were analyzed. Results from crystal growth and material characterization are presented and discussed. Our research results suggest that the novel crystal growth technique is a viable production technique for producing ZnO crystals and substrates for semiconductor device applications.
基金This work was supported by the National Natural Science Foundation of China(22101195 and 21925107)the Natural Science Foundation of Jiangsu Province(BK20210732)+1 种基金the Suzhou Science&Technology NOVA Program(ZXL2022480)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and the Program of Innovative Research Team of Soochow University。
文摘Mechanoredox chemistry that uses highly polarized piezoelectric materials as mechanoredox catalysts to promote redox reactions has emerged recently.It provides an alternative approach alongside the existing polymerization methods.Despite recent accomplishments,determining the quantitative relationship between the structure of ZnO and its catalytic performance for polymerization is still challenging.Herein,we prepared various ZnO crystals with different polar facets ratios to achieve efficient mechanically induced reversible addition-fragmentation chain transfer polymerization(mechano-RAFT).ZnO prepared from Zn(NO3)2 showed a high polar facet ratio of 1.66 and offered the highest catalytic activity among all ZnO samples.A near-quantitative initiator efficiency of 99.5%and narrow molecular weight distribution were achieved for the polymerization of n-butyl acrylate.Furthermore,the high chain-end fidelity and chain extension capability were also evidenced by MALDI-TOF MS and GPC analysis.This work highlighted the significant contribution of polar facets in ZnO to its catalytic activity and will guide the design of mechanoredox catalysis with superior catalytic performance in the future.