ZnO microrods are synthesized using the vapor phase transport method, and the magnetron sputtering is used to decorate the A1 nanoparticles (NPs) on a single ZnO microrod. The micro-PL and I-V responses are measured...ZnO microrods are synthesized using the vapor phase transport method, and the magnetron sputtering is used to decorate the A1 nanoparticles (NPs) on a single ZnO microrod. The micro-PL and I-V responses are measured before and after the decoration orAl NPs. The FDTD stimulation is also carried out to demonstrate the optical field distribution around the decoration of Al NPs on the surface of a ZnO microrod. Due to an implementation of AI NPs, the ZnO microrod exhibits an improved photoresponse behavior. In addition, AI NPs induced localized surface plasmons (LSPs) as well as improved optical field confinement can be ascribed to an enhancement of ultraviolet (UV) response. This research provides a method for improving the responsivity of photodetectors.展开更多
Tetrapod-shaped ZnO whiskers and microrods were synthesized in one crucible by thermal evaporation of Zn/C mixtures at 930 ℃ in air without any catalyst.The digital camera,optical microscopy,scanning electron microsc...Tetrapod-shaped ZnO whiskers and microrods were synthesized in one crucible by thermal evaporation of Zn/C mixtures at 930 ℃ in air without any catalyst.The digital camera,optical microscopy,scanning electron microscopy,energy dispersive X-ray spectroscopy,and X-ray diffraction techniques were used to study the morphologies and crystal structures of these tetrapod-shaped ZnO microcrystals.The results show that these two types of ZnO tetrapods are grown at different heights within the same crucible.The legs of these tetrapod-shaped ZnO crystals are hexagonally faceted.Some tetrapod-shaped ZnO whiskers show hierarchical structures.A short button-like hexagonal ZnO microcrystal is observed at the triple junctions of some tetrapod-shaped ZnO whiskers.The tetrapod-shaped ZnO microrods are capped by two sets of hexagonal pyramids with two different groups of crystal planes for the surfaces.These two types of tetrapod-shaped ZnO microcrystals have different side faces and aspect ratio,which are believed to be the result of their different growth behaviors.The octa-twin model was used to discuss the different growth behaviors of these two types of ZnO tetrapods.The crystal planes of the legs and the pyramids were determined.展开更多
It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers. In this paper, two hexagonal microteeth with varied na...It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers. In this paper, two hexagonal microteeth with varied nanoscaled air-gaps of a ZnO microcomb are used to construct coupled whispering-gallery cavities. This is done to achieve a stable single mode lasing based on Vernier effect without requiring any complicated or sophisticated manipulation to achieve positioning with nanoscale precision. Optical gain and the corresponding ultraviolet lasing performance were improved greatly through coupling with localized surface plasmons of Pt nanoparticles. The ZnO/Pt hybrid microcavities achieved a seven-fold enhancement of intensity of single mode lasing with higher side- mode suppression ratio and lower threshold. The mechanism that led to this enhancement has been described in detail.展开更多
Collective oscillations of free electrons generate plasmons on the surface of a material. A whispering-gallery microcavity effectively confines the light field on its surface based on the total reflection from its int...Collective oscillations of free electrons generate plasmons on the surface of a material. A whispering-gallery microcavity effectively confines the light field on its surface based on the total reflection from its internal wall. When these two kinds of electromagnetic waves meet each other, the stimulated emissions from an individual ZnO microrod were enhanced more than 50-fold and the threshold was reduced after the whispering-gallery microcavity was coated with a monolayer of graphene and A1 nanoparticles. The improvement of the lasing performance was attributed to the synergistic energy coupling of the graphene/A1 surface plasmons with ZnO excitons. The lasing characteristics and the coupling mechanism were investigated systematically.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61475035 and 61275054the Science and Technology Support Program of Jiangsu Province under Grant No BE2016177the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘ZnO microrods are synthesized using the vapor phase transport method, and the magnetron sputtering is used to decorate the A1 nanoparticles (NPs) on a single ZnO microrod. The micro-PL and I-V responses are measured before and after the decoration orAl NPs. The FDTD stimulation is also carried out to demonstrate the optical field distribution around the decoration of Al NPs on the surface of a ZnO microrod. Due to an implementation of AI NPs, the ZnO microrod exhibits an improved photoresponse behavior. In addition, AI NPs induced localized surface plasmons (LSPs) as well as improved optical field confinement can be ascribed to an enhancement of ultraviolet (UV) response. This research provides a method for improving the responsivity of photodetectors.
基金Project(0061)supported by the Doctorate Foundation of Nanchang University,ChinaProject(2006015)supported by the Center for Analysis and Testing,Nanchang University,China
文摘Tetrapod-shaped ZnO whiskers and microrods were synthesized in one crucible by thermal evaporation of Zn/C mixtures at 930 ℃ in air without any catalyst.The digital camera,optical microscopy,scanning electron microscopy,energy dispersive X-ray spectroscopy,and X-ray diffraction techniques were used to study the morphologies and crystal structures of these tetrapod-shaped ZnO microcrystals.The results show that these two types of ZnO tetrapods are grown at different heights within the same crucible.The legs of these tetrapod-shaped ZnO crystals are hexagonally faceted.Some tetrapod-shaped ZnO whiskers show hierarchical structures.A short button-like hexagonal ZnO microcrystal is observed at the triple junctions of some tetrapod-shaped ZnO whiskers.The tetrapod-shaped ZnO microrods are capped by two sets of hexagonal pyramids with two different groups of crystal planes for the surfaces.These two types of tetrapod-shaped ZnO microcrystals have different side faces and aspect ratio,which are believed to be the result of their different growth behaviors.The octa-twin model was used to discuss the different growth behaviors of these two types of ZnO tetrapods.The crystal planes of the legs and the pyramids were determined.
基金Acknowledgements The authors sincerely appreciate the help of Shufeng Wang and Yu Li at Peking University and Andong Xia at Institute of Chemistry Chinese Academy of Sciences for their technical support on time-resolved PL. This work was supported by the National Basic Research Program (No. 2013CB932903), National Natural Science Foundation (Nos. 61275054, 61475035, and 11404289), Jiangsu Province Science and Technology Support Program (No. BE2016177) and Natural Science Foundation of Zhejiang Province (No. LY17A040011).
文摘It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers. In this paper, two hexagonal microteeth with varied nanoscaled air-gaps of a ZnO microcomb are used to construct coupled whispering-gallery cavities. This is done to achieve a stable single mode lasing based on Vernier effect without requiring any complicated or sophisticated manipulation to achieve positioning with nanoscale precision. Optical gain and the corresponding ultraviolet lasing performance were improved greatly through coupling with localized surface plasmons of Pt nanoparticles. The ZnO/Pt hybrid microcavities achieved a seven-fold enhancement of intensity of single mode lasing with higher side- mode suppression ratio and lower threshold. The mechanism that led to this enhancement has been described in detail.
文摘Collective oscillations of free electrons generate plasmons on the surface of a material. A whispering-gallery microcavity effectively confines the light field on its surface based on the total reflection from its internal wall. When these two kinds of electromagnetic waves meet each other, the stimulated emissions from an individual ZnO microrod were enhanced more than 50-fold and the threshold was reduced after the whispering-gallery microcavity was coated with a monolayer of graphene and A1 nanoparticles. The improvement of the lasing performance was attributed to the synergistic energy coupling of the graphene/A1 surface plasmons with ZnO excitons. The lasing characteristics and the coupling mechanism were investigated systematically.