ZnO films with c -axis parallel to the substrate are reported.ZnO films are synthesized by solid-source chemical vapor deposition,a novel CVD technique,using zinc acetate dihydrate (solid) as the source material.The p...ZnO films with c -axis parallel to the substrate are reported.ZnO films are synthesized by solid-source chemical vapor deposition,a novel CVD technique,using zinc acetate dihydrate (solid) as the source material.The properties are characterized by X-ray diffraction,atomic force microscopy and transmission spectra.The parallel oriented ZnO films with mixed orientation for (100) and (110) planes are achieved on glass at the substrate temperature of 200℃ and the source temperature of 280℃,and a qualitative explanation is given for the forming of the mixed orientation.AFM images show that the surface is somewhat rough for the parallel oriented ZnO films.The transmission spectrum exhibits a high transmittance of about 85% in the visible region and shows an optical band gap about 3.25eV at room temperature.展开更多
The growth characteristics during metalorganic chemical vapor deposition and optical properties of ZnO films on sapphire (Al2O3) (0001) and (1120) substrates are studied. For the former,the effects of two import...The growth characteristics during metalorganic chemical vapor deposition and optical properties of ZnO films on sapphire (Al2O3) (0001) and (1120) substrates are studied. For the former,the effects of two important growth parameters,i, e. temperature and pressure, are investigated in detail. Due to the large lattice mismatch between the film and the substrate, ZnO nanocrystals are usually obtained. The growth behavior at the film-substrate interface is found to be strongly dependent on the growth temperature,while the growth pressure determines the shape of the nanostructures as they grow. It is difficult to obtain ZnO films that have good quality and a smooth surface simultaneously. Due to the smaller lattice mismatch,the critical thickness of ZnO on the Al2O3 (1120) surface is found to be much larger than that on the Al2O3 (0001) surface. ZnO/MgZnO quantum wells with graded well thicknesses are grown on the Al2O3 (1120) surfaces,and their optical properties are studied. The built-in electric field in the well layer, generated by the piezoelectric effect, is estimated to be 3 × 10^5 V/cm. It is found that growth at low temperatures and low pressures may facilitate the incorporation of acceptor impurities in ZnO.展开更多
Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties an...Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties and microstructure and crystal structures of the resulting films were investigated by scanning electron microscopy(SEM), atomic force microscopy(AFM), X-ray diffraction(XRD), spectrophotometer and Hall-effect measurement system, respectively. XRD results show that all AZO films exhibit a strong preferred c-axis orientation. However, the crystallinity of films decreases with the increase of substrate rotation speed, accompanying with the unbalanced grains grows. For the films prepared at different target-substrate distances, the uniform microstructure and morphology are observed. The highest carrier concentration of 5.9×1020 cm-3 and Hall mobility of 13.1 cm^2/(V·s) are obtained at substrate rotation speed of 0 and target-substrate distance of 7 cm. The results indicate that the structure and performances of the AZO films are strongly affected by substrate rotation speed.展开更多
Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and ...Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω^(-1)∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.展开更多
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns reveal...Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns revealed that the BZO films had wurtzite structure with a preferential growth orientation along the c-axis. With the increase of pyrolysis temperature, the particle size and surface roughness of the BZO films increased, suggesting that pyrolysis temperature is the critical factor for determining the crystallization behavior of the BZO films. Moreover, the carrier concentration and the carrier mobility increased with increasing the pyrolysis temperature, and the mean transmittance for every film is over 90% in the visible range.展开更多
ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precu...ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.展开更多
This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantatio...This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600 - 900 ℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600- 900 ℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600 - 750 ℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at ~850℃ and ~750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900 ℃.展开更多
ZnO thin films were deposited on Si(111) substrates through a radio frequency (rf) magnetron sputtering system. Then the samples were annealed at different temperatures in air ambience and ammonia ambience respect...ZnO thin films were deposited on Si(111) substrates through a radio frequency (rf) magnetron sputtering system. Then the samples were annealed at different temperatures in air ambience and ammonia ambience respectively. The structure and composition of the ZnO films were studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The morphology of the samples was studied by scanning electron microscopy (SEM). Measured results show that ZnO films with hexagonal wurtzite structure were grown on Si(111) substrates when annealed in the two ambiences. The volatilization process of ZnO in the ammonia ambience at high temperature was discussed and the mechanism of the reaction was analyzed.展开更多
To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabr...To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabricated and used to deposit thin films onto glass substrates by radio frequency(RF) magnetron sputtering.X-ray diffraction(XRD) analysis shows that the films are polycrystalline fitting well with hexagonal wurtzite structure and have a preferred orientation of the(002) plane.The transmittance of above 86% as well as the lowest resistivity of 8.43 × 10^-3 Ω·cm was obtained.展开更多
This paper reports a piezoelectric nanogenerator(NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide(ZnO) thin film, a magnetron spu...This paper reports a piezoelectric nanogenerator(NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide(ZnO) thin film, a magnetron sputtering machine was used. Polymethyl methacrylate(PMMA) and aluminum-doped zinc oxide(AZO) were used as the insulating layer and the top electrode of the NG, respectively. The experimental results show that the ZnO thin films annealed at 150℃ exhibited the highest crystallinity among the prepared films and an optical band gap of 3.24 eV. The NG fabricated with an AZO/PMMA/ZnO/stainless steel configuration exhibited a higher output voltage than the device with an AZO/ZnO/PMMA/stainless steel configuration. In addition, the annealing temperature affected the open-circuit voltage of the NGs;the output voltage reached 3.81 V when the annealing temperature was 150℃. The open-circuit voltage of the prepared self-powered accelerometer increased linearly with acceleration. In addition, the small NG-based accelerometer, which exhibited excellent fatigue resistance, can be used for acceleration measurements of small and lightweight devices.展开更多
Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass ...Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.展开更多
This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as see...This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80 ℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.展开更多
The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quart...The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quartz glass substrates by dip coating. Zinc nitrate, absoluteethanol, and citric acid were used as precursor, solvent, and chelating agent, respectively. Theresults show that ZnO films derived from zinc-citrate have lower crystallization temperature (below400℃), and that the crystal structure is wurtzite. The films, treated over 500℃, consist ofnano-particles and show to be porous at 600℃. The particle size of the film increases with theincrease of the annealing temperature. The largest particle size is 60 nm at 600℃. The opticaltransmittances related to the annealing temperatures become 90% higher in the visible range. Thefilm shows a starting absorption at 380 nm, and the optical band-gap of the thin film (fired at500℃) is 3.25 eV and close to the intrinsic band-gap of ZnO (3.2 eV).展开更多
ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-r...ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.展开更多
Aluminium doped ZnO thin films(ZnO︰Al) were deposited on transparent polymer substrates at room temperature by rf magnetron sputtering method from a ZnO target with Al2O3 of 2.0 wt%. Argon gas pressure varied from ...Aluminium doped ZnO thin films(ZnO︰Al) were deposited on transparent polymer substrates at room temperature by rf magnetron sputtering method from a ZnO target with Al2O3 of 2.0 wt%. Argon gas pressure varied from 0.5 Pa to 2.5 Pa with radio frequency power of 120 W. XRD results showed that all the ZnO︰Al films had a polycrystalline hexagonal structure and a (002) preferred orientation with the c-axis perpendicular to the substrate. The grain sizes of the films were 6.3-14.8 nm.SEM images indicated the ZnO︰Al film with low Argon gas pressure was denser and the deposition rate of the films depended strongly on the Argon gas pressure, increasing firstly and then decreasing with increasing the pressure. The highest deposition rate was 5.2 nm/min at 1 Pa. The optical transmittance of the ZnO︰Al films increased and the blue shift of the absorption edge appeared when the Argon gas pressure increased. The highest transmittance of obtained ZnO︰Al films at 2.5 Pa was about 85% in the visible region. The electrical properties of the films were worsened with the increase of the Argon gas power from 1 Pa to 2.5 Pa. The resistivity of obtained film at 1.0 Pa was 2.79×10-2 Ω·cm.展开更多
ZnO thin films were deposited on n-Si (111) at various substrate temperatures by pulsed laser deposition (PLD). X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectrophotometer (F...ZnO thin films were deposited on n-Si (111) at various substrate temperatures by pulsed laser deposition (PLD). X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectrophotometer (FTIR), and scanning electron microscopy (SEM) were used to analyze the structure, morphology, and optical property of the ZnO thin films. An optimal crystallized ZnO thin film was obtained at the substrate temperature of 600℃. A blue shift was found in PL spectra due to size confinement effect as the grain sizes decreased. The surfaces of the ZnO thin films were more planar and compact as the substrate temperature increased.展开更多
Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temperature. The as-deposited films are annealed at different temperatures from 400℃ to 800 ℃ in air for 1 h. Tr...Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temperature. The as-deposited films are annealed at different temperatures from 400℃ to 800 ℃ in air for 1 h. Transmittance spectra are used to determine the optical parameters and the thicknesses of the films before and after annealing using a nonlinear programming method, and the effects of the annealing temperatures on the optical parameters and the thickness are investigated. The optical band gap is determined from the absorption coefficient. The calculated results show that the film thickness and optical parameters both increase first and then decrease with increasing annealing temperature from 400℃ to 800℃. The band gap of the as-deposited ZnO:In thin film is 3.28 eV, and it decreases to 3.17 eV after annealing at 400℃. Then the band gap increases from 3.17 eV to 3.23 eV with increasing annealing temperature from 400℃ to 800℃.展开更多
Na-doped ZnO thin films were deposited on the glass substrates using sol-gel method. The effect of Na concentrations on the structural and optical properties of ZnO films was studied. As Na concentration increases fro...Na-doped ZnO thin films were deposited on the glass substrates using sol-gel method. The effect of Na concentrations on the structural and optical properties of ZnO films was studied. As Na concentration increases from 0.0 at% to 16.0 at%, preferential c-axis orientation becomes more and more obvious, and the intensity of the diffraction peaks from (103) increases. The optical band gap Eg value increases from 3.261 to 3.286 eV first and then decreases as Na concentration increases from 0.0 to 2.0 at% and then beyond 2.0 at%. The intensity of all the emissions increases with increasing Na concentration and the origins of the violet emission (wavelength in the 400-407 nm) and the blue emission (wavelength at 473 nm) were discussed in detail.展开更多
Transparent conducting ZnO:AI films with good adhesion, low resistivity and high transmittance have been prepared on polyptopylene adipate (PPA), polyisocyanate (PI) and polyester substrates by r.f. magnetron sputteri...Transparent conducting ZnO:AI films with good adhesion, low resistivity and high transmittance have been prepared on polyptopylene adipate (PPA), polyisocyanate (PI) and polyester substrates by r.f. magnetron sputtering. The structural, electrical and optical properties of the obtained films were studied. The polycrystalline ZnO:AI films with resistivity as low as 5.76xl0^-4 Ω.cm, carrier concentration 9.06xl0^20 cm^-3 and Hall mobility 11.98 cm^2 V^-1s^-1 were produced on PPA substrate by controlling the deposition parameters. The average transmittance of films on PPA is ~80% in the wavelength range of visible spectrum. The films on PPA substrates have better electrical and optical properties compared with the films on other kinds of substrates.展开更多
文摘ZnO films with c -axis parallel to the substrate are reported.ZnO films are synthesized by solid-source chemical vapor deposition,a novel CVD technique,using zinc acetate dihydrate (solid) as the source material.The properties are characterized by X-ray diffraction,atomic force microscopy and transmission spectra.The parallel oriented ZnO films with mixed orientation for (100) and (110) planes are achieved on glass at the substrate temperature of 200℃ and the source temperature of 280℃,and a qualitative explanation is given for the forming of the mixed orientation.AFM images show that the surface is somewhat rough for the parallel oriented ZnO films.The transmission spectrum exhibits a high transmittance of about 85% in the visible region and shows an optical band gap about 3.25eV at room temperature.
文摘The growth characteristics during metalorganic chemical vapor deposition and optical properties of ZnO films on sapphire (Al2O3) (0001) and (1120) substrates are studied. For the former,the effects of two important growth parameters,i, e. temperature and pressure, are investigated in detail. Due to the large lattice mismatch between the film and the substrate, ZnO nanocrystals are usually obtained. The growth behavior at the film-substrate interface is found to be strongly dependent on the growth temperature,while the growth pressure determines the shape of the nanostructures as they grow. It is difficult to obtain ZnO films that have good quality and a smooth surface simultaneously. Due to the smaller lattice mismatch,the critical thickness of ZnO on the Al2O3 (1120) surface is found to be much larger than that on the Al2O3 (0001) surface. ZnO/MgZnO quantum wells with graded well thicknesses are grown on the Al2O3 (1120) surfaces,and their optical properties are studied. The built-in electric field in the well layer, generated by the piezoelectric effect, is estimated to be 3 × 10^5 V/cm. It is found that growth at low temperatures and low pressures may facilitate the incorporation of acceptor impurities in ZnO.
基金Project(51302044)supported by the National Natural Science Foundation of ChinaProject(2012M521596)supported by the Chinese Postdoctoral Science FoundationProject(KLB11003)supported by the Key Laboratory of Clean Energy Materials of Guangdong Higher Education Institute,China
文摘Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties and microstructure and crystal structures of the resulting films were investigated by scanning electron microscopy(SEM), atomic force microscopy(AFM), X-ray diffraction(XRD), spectrophotometer and Hall-effect measurement system, respectively. XRD results show that all AZO films exhibit a strong preferred c-axis orientation. However, the crystallinity of films decreases with the increase of substrate rotation speed, accompanying with the unbalanced grains grows. For the films prepared at different target-substrate distances, the uniform microstructure and morphology are observed. The highest carrier concentration of 5.9×1020 cm-3 and Hall mobility of 13.1 cm^2/(V·s) are obtained at substrate rotation speed of 0 and target-substrate distance of 7 cm. The results indicate that the structure and performances of the AZO films are strongly affected by substrate rotation speed.
文摘Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω^(-1)∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.
文摘Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns revealed that the BZO films had wurtzite structure with a preferential growth orientation along the c-axis. With the increase of pyrolysis temperature, the particle size and surface roughness of the BZO films increased, suggesting that pyrolysis temperature is the critical factor for determining the crystallization behavior of the BZO films. Moreover, the carrier concentration and the carrier mobility increased with increasing the pyrolysis temperature, and the mean transmittance for every film is over 90% in the visible range.
文摘ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.
文摘This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600 - 900 ℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600- 900 ℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600 - 750 ℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at ~850℃ and ~750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900 ℃.
基金This work was financially supported by the Key Research Program of National Natural Science Foundation of China (Nos.90301002 and 90201025).
文摘ZnO thin films were deposited on Si(111) substrates through a radio frequency (rf) magnetron sputtering system. Then the samples were annealed at different temperatures in air ambience and ammonia ambience respectively. The structure and composition of the ZnO films were studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The morphology of the samples was studied by scanning electron microscopy (SEM). Measured results show that ZnO films with hexagonal wurtzite structure were grown on Si(111) substrates when annealed in the two ambiences. The volatilization process of ZnO in the ammonia ambience at high temperature was discussed and the mechanism of the reaction was analyzed.
文摘To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabricated and used to deposit thin films onto glass substrates by radio frequency(RF) magnetron sputtering.X-ray diffraction(XRD) analysis shows that the films are polycrystalline fitting well with hexagonal wurtzite structure and have a preferred orientation of the(002) plane.The transmittance of above 86% as well as the lowest resistivity of 8.43 × 10^-3 Ω·cm was obtained.
基金supported by the National Natural Science Foundation of China (No. 61671017)Key Project of Excellent Youth Talent Support Program in Colleges and Universities of Anhui Province (No. gxyqZD2018004)+1 种基金Provincial Natural Science Foundation of Anhui Higher Education Institution of China (No. KJ2016A787)Anhui Provincial Natural Science Foundation of China (No. 1508085ME72)
文摘This paper reports a piezoelectric nanogenerator(NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide(ZnO) thin film, a magnetron sputtering machine was used. Polymethyl methacrylate(PMMA) and aluminum-doped zinc oxide(AZO) were used as the insulating layer and the top electrode of the NG, respectively. The experimental results show that the ZnO thin films annealed at 150℃ exhibited the highest crystallinity among the prepared films and an optical band gap of 3.24 eV. The NG fabricated with an AZO/PMMA/ZnO/stainless steel configuration exhibited a higher output voltage than the device with an AZO/ZnO/PMMA/stainless steel configuration. In addition, the annealing temperature affected the open-circuit voltage of the NGs;the output voltage reached 3.81 V when the annealing temperature was 150℃. The open-circuit voltage of the prepared self-powered accelerometer increased linearly with acceleration. In addition, the small NG-based accelerometer, which exhibited excellent fatigue resistance, can be used for acceleration measurements of small and lightweight devices.
基金supported by the National Natural Science Foundation of China(Grant No.11304160)the Natural Science Foundation of Jiangsu Provincial Higher Education Institutions,China(Grant No.13KJB140008)the Foundation of Nanjing University of Posts and Telecommunications,China(Grant No.NY213018)
文摘Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.
基金Project supported by the "863" High Technology Research Program in China (Grant No 2001AA311120), the National Natural Science Foundation of China (Grant No 60278031), the Innovation Project of Chinese Academy of Sciences, the Jilin Province Science and Technology Development Program Project of China (Grant No 20040564) and the Young Innovation Function of the Changchun Institute of 0ptics, Fine Mechanics and Physics, Chinese Academy of Sciences (Grant No Q03M23Z).
文摘This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80 ℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.
基金This work was financially supported by the Natural Science Foundation of Tianjin (No. 33802311)
文摘The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quartz glass substrates by dip coating. Zinc nitrate, absoluteethanol, and citric acid were used as precursor, solvent, and chelating agent, respectively. Theresults show that ZnO films derived from zinc-citrate have lower crystallization temperature (below400℃), and that the crystal structure is wurtzite. The films, treated over 500℃, consist ofnano-particles and show to be porous at 600℃. The particle size of the film increases with theincrease of the annealing temperature. The largest particle size is 60 nm at 600℃. The opticaltransmittances related to the annealing temperatures become 90% higher in the visible range. Thefilm shows a starting absorption at 380 nm, and the optical band-gap of the thin film (fired at500℃) is 3.25 eV and close to the intrinsic band-gap of ZnO (3.2 eV).
基金Project supported by the Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Graduates, China (Grant No. 292122)the Equipment Research Foundation of China (Grant No. 373974)
文摘ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.
基金Funded by Key Project of Natural Science Foundation of Hubei Province(No.2008CDA025)
文摘Aluminium doped ZnO thin films(ZnO︰Al) were deposited on transparent polymer substrates at room temperature by rf magnetron sputtering method from a ZnO target with Al2O3 of 2.0 wt%. Argon gas pressure varied from 0.5 Pa to 2.5 Pa with radio frequency power of 120 W. XRD results showed that all the ZnO︰Al films had a polycrystalline hexagonal structure and a (002) preferred orientation with the c-axis perpendicular to the substrate. The grain sizes of the films were 6.3-14.8 nm.SEM images indicated the ZnO︰Al film with low Argon gas pressure was denser and the deposition rate of the films depended strongly on the Argon gas pressure, increasing firstly and then decreasing with increasing the pressure. The highest deposition rate was 5.2 nm/min at 1 Pa. The optical transmittance of the ZnO︰Al films increased and the blue shift of the absorption edge appeared when the Argon gas pressure increased. The highest transmittance of obtained ZnO︰Al films at 2.5 Pa was about 85% in the visible region. The electrical properties of the films were worsened with the increase of the Argon gas power from 1 Pa to 2.5 Pa. The resistivity of obtained film at 1.0 Pa was 2.79×10-2 Ω·cm.
基金This work was financially supported by the Key Research Program of National Natural Science Foundation of China (No. 90301002 and No. 90201025)
文摘ZnO thin films were deposited on n-Si (111) at various substrate temperatures by pulsed laser deposition (PLD). X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectrophotometer (FTIR), and scanning electron microscopy (SEM) were used to analyze the structure, morphology, and optical property of the ZnO thin films. An optimal crystallized ZnO thin film was obtained at the substrate temperature of 600℃. A blue shift was found in PL spectra due to size confinement effect as the grain sizes decreased. The surfaces of the ZnO thin films were more planar and compact as the substrate temperature increased.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50942021 and 11075314)the Fundamental Research Fund for the Central Universities (Grant No. CDJXS10102207)
文摘Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temperature. The as-deposited films are annealed at different temperatures from 400℃ to 800 ℃ in air for 1 h. Transmittance spectra are used to determine the optical parameters and the thicknesses of the films before and after annealing using a nonlinear programming method, and the effects of the annealing temperatures on the optical parameters and the thickness are investigated. The optical band gap is determined from the absorption coefficient. The calculated results show that the film thickness and optical parameters both increase first and then decrease with increasing annealing temperature from 400℃ to 800℃. The band gap of the as-deposited ZnO:In thin film is 3.28 eV, and it decreases to 3.17 eV after annealing at 400℃. Then the band gap increases from 3.17 eV to 3.23 eV with increasing annealing temperature from 400℃ to 800℃.
基金Funded by the National Natural Science Foundation of China (No.50872001)Research Fund for the Doctoral Program of Higher Education ofChina (No. 20060357003)Talent Foundation of Anhui Province (No.2004Z029)
文摘Na-doped ZnO thin films were deposited on the glass substrates using sol-gel method. The effect of Na concentrations on the structural and optical properties of ZnO films was studied. As Na concentration increases from 0.0 at% to 16.0 at%, preferential c-axis orientation becomes more and more obvious, and the intensity of the diffraction peaks from (103) increases. The optical band gap Eg value increases from 3.261 to 3.286 eV first and then decreases as Na concentration increases from 0.0 to 2.0 at% and then beyond 2.0 at%. The intensity of all the emissions increases with increasing Na concentration and the origins of the violet emission (wavelength in the 400-407 nm) and the blue emission (wavelength at 473 nm) were discussed in detail.
基金National Natural Science Foundation of China Natural Science Foundation of Shandong Province!(No. 69876025).
文摘Transparent conducting ZnO:AI films with good adhesion, low resistivity and high transmittance have been prepared on polyptopylene adipate (PPA), polyisocyanate (PI) and polyester substrates by r.f. magnetron sputtering. The structural, electrical and optical properties of the obtained films were studied. The polycrystalline ZnO:AI films with resistivity as low as 5.76xl0^-4 Ω.cm, carrier concentration 9.06xl0^20 cm^-3 and Hall mobility 11.98 cm^2 V^-1s^-1 were produced on PPA substrate by controlling the deposition parameters. The average transmittance of films on PPA is ~80% in the wavelength range of visible spectrum. The films on PPA substrates have better electrical and optical properties compared with the films on other kinds of substrates.