We studied the local structure and properties of six-fold coordinated silicon(Si[6]) in BaOSiO2-P2O5 glasses. Nuclear magnetic resonance(NMR) and Raman spectroscopy revealed the existence of sixfold coordinated silico...We studied the local structure and properties of six-fold coordinated silicon(Si[6]) in BaOSiO2-P2O5 glasses. Nuclear magnetic resonance(NMR) and Raman spectroscopy revealed the existence of sixfold coordinated silicon species and network former units(NFUs) in the BaO-SiO2-P2O5 glasses. The glass transition temperature(Tg), which was measured by differential scanning calorimetry, increased rapidly along with the increase of SiO2 from 0 to 10 mol%, then declined and finally increased again, which showed a "Z" trend along with the increase of SiO2 while the density of the glasses showed the opposite trend. When the addition of SiO2 is 16 mol%, Tg decreased to an extremely low value(807.9 K). Besides, the Vickers indentation hardness(Hv) had been significantly enhanced from 4.66 to 6.63 GPa by adding 16 mol% SiO2. Furthermore, the liquid fragility index(m) of the glasses declined slowly firstly and then increased rapidly when the amount of SiO2 is greater than 13 mol%.展开更多
A lithium ion conductive solid electrolyte, L20-AI203-TiO2-SiO2-P20s glass with NASICON- type structure have been synthesized and transformed into glass-ceramic through thermal-treatment at various temperatures from 7...A lithium ion conductive solid electrolyte, L20-AI203-TiO2-SiO2-P20s glass with NASICON- type structure have been synthesized and transformed into glass-ceramic through thermal-treatment at various temperatures from 700 to 1 000 ~C for 12 h. The differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and complex impedance techniques were employed to characterize the samples. The experimental results indicated that the capability of glass forming in this system is superior to that of L20-A1203-TiO2-PzO~. The glass has an amorphous structure and resultant glass-ceramic mainly consisting of LiTi2(PO4)3 phases. Impurity phases AIPO4, TiO2, TiP207 and unidentified phase were observed. With the enhanced heat-treatment temperature, grain grew gradually and lithium ion conductivity of glass-ceramics increased accordingly, the related impedance semicircles were depressed gradually and even disappeared, which could be analytically explained by the coordinate action of the 'Constant phase element' (CPE) model and the 'Concept of Mismatch and Relaxation' model (CMR). When the sample is devitrified at 1 000 ~C, the maximum room temperature lithium ion conductivity comes up to 4.1 x 10-4 S/cm, which is suitable for the application as an electrolyte of all-solid-state lithium batteries.展开更多
The lithium ion-conductive solid electrolyte in the oxide systems of Li2O-TiO2-SiO2-P2O5 and Li2O-TiO2-Al2O3-P2O5 was prepared by solid-state reaction. The electrolyte pellets by cold-pressing method is 13 mm in diame...The lithium ion-conductive solid electrolyte in the oxide systems of Li2O-TiO2-SiO2-P2O5 and Li2O-TiO2-Al2O3-P2O5 was prepared by solid-state reaction. The electrolyte pellets by cold-pressing method is 13 mm in diameter, about 1 mm in thickness. Phase identification and surface morphology of the products were carried out by X-ray diffraction and scanning electron microscopy. Ionic conductivity of the pellets was investigated through AC impedance. The results show that adulterate other cations can improve the ionic conductivity of the solid electrolyte. The maximum ionic conductivity in the samples is 9.912 × 10-4 S·cm-1 in the Li2O-TiO2-SiO2-P2O5 system.展开更多
基金Funded by National Natural Science Foundation of China(Nos.51772223,51372180)
文摘We studied the local structure and properties of six-fold coordinated silicon(Si[6]) in BaOSiO2-P2O5 glasses. Nuclear magnetic resonance(NMR) and Raman spectroscopy revealed the existence of sixfold coordinated silicon species and network former units(NFUs) in the BaO-SiO2-P2O5 glasses. The glass transition temperature(Tg), which was measured by differential scanning calorimetry, increased rapidly along with the increase of SiO2 from 0 to 10 mol%, then declined and finally increased again, which showed a "Z" trend along with the increase of SiO2 while the density of the glasses showed the opposite trend. When the addition of SiO2 is 16 mol%, Tg decreased to an extremely low value(807.9 K). Besides, the Vickers indentation hardness(Hv) had been significantly enhanced from 4.66 to 6.63 GPa by adding 16 mol% SiO2. Furthermore, the liquid fragility index(m) of the glasses declined slowly firstly and then increased rapidly when the amount of SiO2 is greater than 13 mol%.
基金National Basic Research Program of China (No.2009CB939704)National Natural Science Foundation of China (Nos.51032005, 60808024)the Fundamental Research Funds for the Central Universities (Wuhan University of Technology)
文摘A lithium ion conductive solid electrolyte, L20-AI203-TiO2-SiO2-P20s glass with NASICON- type structure have been synthesized and transformed into glass-ceramic through thermal-treatment at various temperatures from 700 to 1 000 ~C for 12 h. The differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and complex impedance techniques were employed to characterize the samples. The experimental results indicated that the capability of glass forming in this system is superior to that of L20-A1203-TiO2-PzO~. The glass has an amorphous structure and resultant glass-ceramic mainly consisting of LiTi2(PO4)3 phases. Impurity phases AIPO4, TiO2, TiP207 and unidentified phase were observed. With the enhanced heat-treatment temperature, grain grew gradually and lithium ion conductivity of glass-ceramics increased accordingly, the related impedance semicircles were depressed gradually and even disappeared, which could be analytically explained by the coordinate action of the 'Constant phase element' (CPE) model and the 'Concept of Mismatch and Relaxation' model (CMR). When the sample is devitrified at 1 000 ~C, the maximum room temperature lithium ion conductivity comes up to 4.1 x 10-4 S/cm, which is suitable for the application as an electrolyte of all-solid-state lithium batteries.
文摘The lithium ion-conductive solid electrolyte in the oxide systems of Li2O-TiO2-SiO2-P2O5 and Li2O-TiO2-Al2O3-P2O5 was prepared by solid-state reaction. The electrolyte pellets by cold-pressing method is 13 mm in diameter, about 1 mm in thickness. Phase identification and surface morphology of the products were carried out by X-ray diffraction and scanning electron microscopy. Ionic conductivity of the pellets was investigated through AC impedance. The results show that adulterate other cations can improve the ionic conductivity of the solid electrolyte. The maximum ionic conductivity in the samples is 9.912 × 10-4 S·cm-1 in the Li2O-TiO2-SiO2-P2O5 system.