ZnSe is one of the important and excellent II-VI semiconductor materials, which has direct transition band structure. In this paper, ZnSe thin films were prepared by an electrochemical deposition method, and the forma...ZnSe is one of the important and excellent II-VI semiconductor materials, which has direct transition band structure. In this paper, ZnSe thin films were prepared by an electrochemical deposition method, and the formation mechanism of ZnSe was studied systematically. Voltammerry and chronoamperometry combined with X-ray diffraction (XRD) and Raman techniques were used to analyze the deposition processes. It is found that the substrate and deposition potentials have a great influence on the phase composition of deposited thin film, and Zn substrate is beneficial to the preparation ZnSe films. Strong selenium-substrate interaction results in the formation of selenimn compounds involving electrode materials. The addition of Zn(II) source can affect the reduction potential of Se, and results in the change of reducing mechanism of Se(0) from Se(IV). Se(0) formed from H2Se because the formation of H2Se is more active than forming Se(0) directly from Se(IV), and H2Se can recombine with the substrate material, forming selenium-substrate compounds more quickly.展开更多
ZnSe/SiO2 composite thin films was prepared by sol-gel method. XRD results indicate the phase structure of ZnSe particles embedded in ZnSe/SiO2 composite thin films is sphalerite (cubic ZnS). Spectroscopic ellipsomete...ZnSe/SiO2 composite thin films was prepared by sol-gel method. XRD results indicate the phase structure of ZnSe particles embedded in ZnSe/SiO2 composite thin films is sphalerite (cubic ZnS). Spectroscopic ellipsometers were used to investigated the dependences of ellipsometric angle with wavelength of ZnSe/SiO2 composite thin films. The optical constant, thickness, porosity and the concentration of ZnSe of ZnSe/SiO2 thin composite films were fitted according to Maxwell-Garnett effective medium theory. The thickness of ZnSe/SiO2 composite thin thin films was also measured through surface profile. The photoluminescence properties of ZnSe/SiO2 thin composite thin films was investigated through fluorescence spectrometer. The photoluminescence results show that the emission peak at 487 nm (2.5 eV) is excited at 395 nm corresponds to the band-to-band emission of sphalerite ZnSe crystal(2.58 eV). The strength free exciton emission and other emission peaks correlating to ZnSe lattice defect were also observed.展开更多
Photoanodic properties greatly determine the overall performance of quantum-dot-sensitized solar cells(QDSCs). In the present report, the microdynamic behaviors of carriers in the nanocomposite thin-film, a Zn Se QD...Photoanodic properties greatly determine the overall performance of quantum-dot-sensitized solar cells(QDSCs). In the present report, the microdynamic behaviors of carriers in the nanocomposite thin-film, a Zn Se QD-sensitized mesoporous La-doped nano-TiO2 thin-film, as a potential candidate for photoanode, are probed via nanosecond transient photovoltaic(TPV) spectroscopy. The results confirm that the L-Cys ligand has a dual function serving as a stabilizer and molecular linker. Large quantities of interface states are located at the energy level with a photoelectric threshold of1.58 eV and a quantum well(QW) depth of 0.67 eV. This QW depth is approximately 0.14 eV deeper than the depth of QW buried in the Zn Se QDs, and a deeper QW results in a higher quantum confinement energy. A strong quantum confinement effect of the interface state may be responsible for the excellent TPV characteristics of the photoanode. For example, the peak intensity of the TPV response of the QD-sensitized thin-film lasts a long time, from 9.40 × 10^(-7) s to 2.96 × 10^(-4) s,and the end time of the PTV response of the QD-sensitized thin-film is extended by approximately an order of magnitude compared with those of the TiO2 substrate and the QDs. The TPV characteristics of the QD-sensitized thin-film change from p-type to n-type for the QDs before and after sensitizing. These properties strongly depend on the extended diffusion length of the photogenerated carries and the reduced recombination rate of photogenerated electron-hole pairs, resulting in prolonged carrier lifetime and an increased level of electron injection into the TiO2 thin-film substrate.展开更多
The crystal structure, electrical and optical properties of ZnSe thin films deposited on an In203 :Sn (ITO) substrate are evaluated for their suitability as the window layer of CdTe thin film solar cells. ZnSe thin...The crystal structure, electrical and optical properties of ZnSe thin films deposited on an In203 :Sn (ITO) substrate are evaluated for their suitability as the window layer of CdTe thin film solar cells. ZnSe thin films of 80, 90, and 100 nm thickness were deposited by a physical vapor deposition method on Indium tin oxide coated glass substrates. The lattice parameters are increased to 5.834 A when the film thickness was 100 rim, which is close to that of CdS. The crystallite size is decreased with the increase of film thickness. The optical transmission analysis shows that the energy gap for the sample with the highest thickness has also increased and is very close to 2.7 eV. The photo decay is also studied as a function of ZnSe film thickness.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.51574071. 51322406 and 21501023)the Fundamental Research Funds for the Central Universities(No.140205001)
文摘ZnSe is one of the important and excellent II-VI semiconductor materials, which has direct transition band structure. In this paper, ZnSe thin films were prepared by an electrochemical deposition method, and the formation mechanism of ZnSe was studied systematically. Voltammerry and chronoamperometry combined with X-ray diffraction (XRD) and Raman techniques were used to analyze the deposition processes. It is found that the substrate and deposition potentials have a great influence on the phase composition of deposited thin film, and Zn substrate is beneficial to the preparation ZnSe films. Strong selenium-substrate interaction results in the formation of selenimn compounds involving electrode materials. The addition of Zn(II) source can affect the reduction potential of Se, and results in the change of reducing mechanism of Se(0) from Se(IV). Se(0) formed from H2Se because the formation of H2Se is more active than forming Se(0) directly from Se(IV), and H2Se can recombine with the substrate material, forming selenium-substrate compounds more quickly.
基金Project (2002CB613305) supported by the National Basic Research Program project supported by the International Cooperation Research Project of Chinese-Israel of Ministry Education of China
文摘ZnSe/SiO2 composite thin films was prepared by sol-gel method. XRD results indicate the phase structure of ZnSe particles embedded in ZnSe/SiO2 composite thin films is sphalerite (cubic ZnS). Spectroscopic ellipsometers were used to investigated the dependences of ellipsometric angle with wavelength of ZnSe/SiO2 composite thin films. The optical constant, thickness, porosity and the concentration of ZnSe of ZnSe/SiO2 thin composite films were fitted according to Maxwell-Garnett effective medium theory. The thickness of ZnSe/SiO2 composite thin thin films was also measured through surface profile. The photoluminescence properties of ZnSe/SiO2 thin composite thin films was investigated through fluorescence spectrometer. The photoluminescence results show that the emission peak at 487 nm (2.5 eV) is excited at 395 nm corresponds to the band-to-band emission of sphalerite ZnSe crystal(2.58 eV). The strength free exciton emission and other emission peaks correlating to ZnSe lattice defect were also observed.
基金supported by the Natural Science Foundation of Hebei Province,China(Grant Nos.E2013203296 and E2017203029)
文摘Photoanodic properties greatly determine the overall performance of quantum-dot-sensitized solar cells(QDSCs). In the present report, the microdynamic behaviors of carriers in the nanocomposite thin-film, a Zn Se QD-sensitized mesoporous La-doped nano-TiO2 thin-film, as a potential candidate for photoanode, are probed via nanosecond transient photovoltaic(TPV) spectroscopy. The results confirm that the L-Cys ligand has a dual function serving as a stabilizer and molecular linker. Large quantities of interface states are located at the energy level with a photoelectric threshold of1.58 eV and a quantum well(QW) depth of 0.67 eV. This QW depth is approximately 0.14 eV deeper than the depth of QW buried in the Zn Se QDs, and a deeper QW results in a higher quantum confinement energy. A strong quantum confinement effect of the interface state may be responsible for the excellent TPV characteristics of the photoanode. For example, the peak intensity of the TPV response of the QD-sensitized thin-film lasts a long time, from 9.40 × 10^(-7) s to 2.96 × 10^(-4) s,and the end time of the PTV response of the QD-sensitized thin-film is extended by approximately an order of magnitude compared with those of the TiO2 substrate and the QDs. The TPV characteristics of the QD-sensitized thin-film change from p-type to n-type for the QDs before and after sensitizing. These properties strongly depend on the extended diffusion length of the photogenerated carries and the reduced recombination rate of photogenerated electron-hole pairs, resulting in prolonged carrier lifetime and an increased level of electron injection into the TiO2 thin-film substrate.
文摘The crystal structure, electrical and optical properties of ZnSe thin films deposited on an In203 :Sn (ITO) substrate are evaluated for their suitability as the window layer of CdTe thin film solar cells. ZnSe thin films of 80, 90, and 100 nm thickness were deposited by a physical vapor deposition method on Indium tin oxide coated glass substrates. The lattice parameters are increased to 5.834 A when the film thickness was 100 rim, which is close to that of CdS. The crystallite size is decreased with the increase of film thickness. The optical transmission analysis shows that the energy gap for the sample with the highest thickness has also increased and is very close to 2.7 eV. The photo decay is also studied as a function of ZnSe film thickness.