A series of red emitting ZnTiO3 phosphors co-doped with Eu3+) and alkali metal ions(Li+, Na+ and K+) was prepared by sol-gel method. The crystal structure of the phosphors was investigated by using X-ray diffra...A series of red emitting ZnTiO3 phosphors co-doped with Eu3+) and alkali metal ions(Li+, Na+ and K+) was prepared by sol-gel method. The crystal structure of the phosphors was investigated by using X-ray diffraction(XRD) and transmission electron microscopy(TEM) after annealing at 700 ℃. The results show that the crystal structure belongs to the hexagonal phase of ZnTiO3 with space group R-3:R. The influence of site occupancy of different alkali metal ions on the emission of ZnTiO3:Eu3+) phosphors was investigated in detail. The emission intensity was significantly enhanced by introducing alkali metal ions. In contrast to Eu3+) singly doped ZnTiO3, the red emission intensities of ZnTiO3:Eu3+) with 4 mol% alkali metal ions(Li+, Na+, K+) were enhanced by about 2.1, 1.7 and 1.4 times, respectively. In addition, the Commission Internationale Ed I'eclairage(CIE) chromaticity coordinates of ZnTiO3:Eu3+), Li+(0.672, 0.328) are quite similar to the National Television Standard Committee(NTSC) standard values for the red(0.670, 0.380).展开更多
基金Supported by Department of Social Development Project of Jiangsu Province(BE2015659)Science and Technology Project of Anhui Province(1604a0802122)Collaborative Innovation Center Project in Jiangsu Province(GX2015302)
文摘A series of red emitting ZnTiO3 phosphors co-doped with Eu3+) and alkali metal ions(Li+, Na+ and K+) was prepared by sol-gel method. The crystal structure of the phosphors was investigated by using X-ray diffraction(XRD) and transmission electron microscopy(TEM) after annealing at 700 ℃. The results show that the crystal structure belongs to the hexagonal phase of ZnTiO3 with space group R-3:R. The influence of site occupancy of different alkali metal ions on the emission of ZnTiO3:Eu3+) phosphors was investigated in detail. The emission intensity was significantly enhanced by introducing alkali metal ions. In contrast to Eu3+) singly doped ZnTiO3, the red emission intensities of ZnTiO3:Eu3+) with 4 mol% alkali metal ions(Li+, Na+, K+) were enhanced by about 2.1, 1.7 and 1.4 times, respectively. In addition, the Commission Internationale Ed I'eclairage(CIE) chromaticity coordinates of ZnTiO3:Eu3+), Li+(0.672, 0.328) are quite similar to the National Television Standard Committee(NTSC) standard values for the red(0.670, 0.380).