期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
锌镍电池负极的循环伏安行为
1
作者 唐有根 唐赞谦 桑商斌 《电池》 CAS CSCD 北大核心 2004年第2期109-110,共2页
采用粉末微电极研究了锌镍电池负极活性物质ZnO、Zn4SO4(OH)6和CaZnO2在1 8mol/LK2CO3、1 8mol/LKF和3mol/L的KOH电解液中的循环伏安行为。研究了峰值电流电势与扫描速度的关系,推导出了锌镍电池负极活性物质循环伏安的可逆性区间,比较... 采用粉末微电极研究了锌镍电池负极活性物质ZnO、Zn4SO4(OH)6和CaZnO2在1 8mol/LK2CO3、1 8mol/LKF和3mol/L的KOH电解液中的循环伏安行为。研究了峰值电流电势与扫描速度的关系,推导出了锌镍电池负极活性物质循环伏安的可逆性区间,比较了活性物质的可逆性,发现氧化锌表现出更好的可逆性。计算了3种活性物质制备的锌负极在可逆性区间内的平衡电极电位。 展开更多
关键词 锌镍蓄电池 电解液 活性物质 电池负极 循环伏安行为
下载PDF
Effect and mechanism of nano-Ca_(10)(PO_(4))_(6)(OH)_(2)additive on compressive strength of calcium aluminate cement at high temperature
2
作者 Qian Sun En-hui Wang +2 位作者 Xin-mei Hou Zhi-jun He Tong-xiang Liang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2022年第7期1063-1072,共10页
Calcium aluminate cement(CAC)is widely used as a binder for refractory materials,and thus the improvement in compressive strength is of vital importance for CAC applied at high temperature.For this purpose,nano-Ca_(10... Calcium aluminate cement(CAC)is widely used as a binder for refractory materials,and thus the improvement in compressive strength is of vital importance for CAC applied at high temperature.For this purpose,nano-Ca_(10)(PO_(4))_(6)(OH)_(2)additive with a ratio of 0.5–1.5 mass%was added with the water-cement ratio to be 0.4.X-ray diffraction and isothermal calorimetry analysis demonstrate that nano-Ca_(10)(PO_(4))_(6)(OH)_(2)additive can shorten the hydration process and promote the formation of main hydrates of CaAl2O4·10H2O(CAH10)and Ca2Al2O5·8H2O(C2AH8).In addition,scanning electron microscopy results suggest that nano-Ca_(10)(PO_(4))_(6)(OH)_(2)can protect CAH10 and C2AH8 from being destroyed during the calcination,guaranteeing that these thin lamellar crystals are intertwined to form the denser microstructure.Benefited from above effects,nano-Ca_(10)(PO_(4))_(6)(OH)_(2)can obviously improve the compressive strength of the CAC mortar samples cured for 7 d after calcination at 1100°C,while the improving effect is dependent upon its contents.Especially,compared with the one without the additive,the compressive strength of the sample with 1.0%nano-Ca_(10)(PO_(4))_(6)(OH)_(2)is increased by 14%. 展开更多
关键词 Nano-Ca_(10)(PO_(4))_(6)(oh)_(2) Cement CALCINATION Microstructure Compressive strength
原文传递
High performance of HNaV_(6)O_(16)·4H2_(O) nanobelts for aqueous zinc-ion batteries with in-situ phase transformation by Zn(CF_(3)SO_(3))_(2) electrolyte 被引量:6
3
作者 Chao Guan Fang Hu +3 位作者 Xin Yu Hai-Lian Chen Gui-Hong Song Kai Zhu 《Rare Metals》 SCIE EI CAS CSCD 2022年第2期448-456,共9页
Zn(CF_(3)SO_(3))_(2)as an electrolyte has been widely used to improve the electrochemical performance for ZIBs due to that the bulky CF_(3)SO_(3)-can reduce the solvation effect of Zn^(2+)and promote the ionic diffusi... Zn(CF_(3)SO_(3))_(2)as an electrolyte has been widely used to improve the electrochemical performance for ZIBs due to that the bulky CF_(3)SO_(3)-can reduce the solvation effect of Zn^(2+)and promote the ionic diffusion.Herein,we found that Zn(CF_(3)SO_(3))_(2)electrolyte can induce different electrochemical mechanisms from ZnSO_(4)electrolyte.Compared to the ZnSO^(4)electrolyte,the HNaV_(6)O_(16)·4H2_(O)electrode with Zn(CF_(3)SO_(3))_(2)electrolyte exhibits a high capacity of 444 mAh·g^(-1)at 500 mA·g^(-1)with a capacity retention of 92.3%after 80 cycles.Even,at a high rate of 5 Ag-1,the HNaV_(6)O_(16)·4H_(2)O electrode delivers an initial discharge capacity of 328 mAh·g^(-1)with a capacity retention of 93.7%after 1000 cycles.Differing from the mechanism with ZnSO4 electrolyte,the excellent cycle stability of HNaV_(6)O_(16)·4H_(2)Oelectrode can be attributed to the in-situ phase transformation to ZnxV_(2)O_(5)·nH_(2)O based on the co-intercalation of Zn^(2+)/H^(+). 展开更多
关键词 HNaV_(6)O_(16)·4H2_(O) Zinc-ion batteries Zn(CF_(3)SO_(3))_(2) ZnSO_(4) ELECTROLYTE
原文传递
化学实验与理论计算结合培养思维能力——以“补铁剂中铁元素价态的检验”为例 被引量:1
4
作者 陈丽华 《中学化学教学参考》 2021年第17期31-33,共3页
在“补铁剂中铁元素价态的检验”实验过程中,用加碱法检验Fe元素的价态,不同实验小组得到不同的实验现象,从而提出质疑,引导学生通过计算沉淀溶解平衡常数得出结论:得不到白色沉淀的主要原因是城的农度过大,沉淀来不及聚沉,便优先与周围... 在“补铁剂中铁元素价态的检验”实验过程中,用加碱法检验Fe元素的价态,不同实验小组得到不同的实验现象,从而提出质疑,引导学生通过计算沉淀溶解平衡常数得出结论:得不到白色沉淀的主要原因是城的农度过大,沉淀来不及聚沉,便优先与周围的OH-形成络合离子[Fe(OH)_(6)]^(4-)。进一步延伸计算Fe^(2+)与HCO_(3)^(-)反应是以水解为主还是以电离为主,通过计算反应的化学平衡常数、吉布斯自由能等,相互验证,得出结论:反应以HCO_(3)^(-)的电离反应为主,主要产物是FeCO_(3)。 展开更多
关键词 理论计算 Fe(oh)_(6)^(4-) FeCO_(3) 平衡常数尺 吉布斯自由能△G
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部