Crack line analysis is an effective way to solve elastic-plastic crack problems. Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions n...Crack line analysis is an effective way to solve elastic-plastic crack problems. Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions near the crack line. To address mode- Ⅲ crack problems under the perfect elastic-plastic condition, matching procedures of the crack line analysis method axe summarized and refined to give general forms and formulation steps of plastic field, elastic-plastic boundary, and elastic-plastic matching equations near the crack line. The research unifies mode-III crack problems under different conditions into a problem of determining four integral constants with four matching equations. An example is given to verify correctness, conciseness, and generality of the procedure.展开更多
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip posses...An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.展开更多
基金supported by the National Natural Science Foundation of China (No.10672196)
文摘Crack line analysis is an effective way to solve elastic-plastic crack problems. Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions near the crack line. To address mode- Ⅲ crack problems under the perfect elastic-plastic condition, matching procedures of the crack line analysis method axe summarized and refined to give general forms and formulation steps of plastic field, elastic-plastic boundary, and elastic-plastic matching equations near the crack line. The research unifies mode-III crack problems under different conditions into a problem of determining four integral constants with four matching equations. An example is given to verify correctness, conciseness, and generality of the procedure.
文摘An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.