期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
Investigation of FRP and SFRC Technologies for Efficient Tunnel Reinforcement Using the Cohesive Zone Model
1
作者 Gang Niu Zhaoyang Jin +1 位作者 Wei Zhang Yiqun Huang 《Structural Durability & Health Monitoring》 EI 2024年第2期161-179,共19页
Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economi... Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economical,and robust tunnel reinforcement techniques.This paper explores fiber reinforced polymer(FRP)and steel fiber reinforced concrete(SFRC)technologies,which have emerged as viable solutions for enhancing tunnel structures.FRP is celebrated for its lightweight and high-strength attributes,effectively augmenting load-bearing capacity and seismic resistance,while SFRC’s notable crack resistance and longevity potentially enhance the performance of tunnel segments.Nonetheless,current research predominantly focuses on experimental analysis,lacking comprehensive theoretical models.To bridge this gap,the cohesive zone model(CZM),which utilizes cohesive elements to characterize the potential fracture surfaces of concrete/SFRC,the rebar-concrete interface,and the FRP-concrete interface,was employed.A modeling approach was subsequently proposed to construct a tunnel segment model reinforced with either SFRC or FRP.Moreover,the corresponding mixed-mode constitutive models,considering interfacial friction,were integrated into the proposed model.Experimental validation and numerical simulations corroborated the accuracy of the proposed model.Additionally,this study examined the reinforcement design of tunnel segments.Through a numerical evaluation,the effectiveness of innovative reinforcement schemes,such as substituting concrete with SFRC and externally bonding FRP sheets,was assessed utilizing a case study from the Fuzhou Metro Shield Tunnel Construction Project. 展开更多
关键词 Tunnel segment FRP SFRC cohesive zone model constitutive model fracture process
下载PDF
Numerical study of fatigue damage of asphalt concrete using cohesive zone model 被引量:5
2
作者 金光来 黄晓明 +1 位作者 张苏龙 梁彦龙 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期431-435,共5页
In order to investigate the fatigue behavior of asphalt concrete, a new numerical approach based on a bi-linear cohesive zone model (CZM) is developed. Integrated with the CZM, a fatigue damage evolution model is es... In order to investigate the fatigue behavior of asphalt concrete, a new numerical approach based on a bi-linear cohesive zone model (CZM) is developed. Integrated with the CZM, a fatigue damage evolution model is established to indicate the gradual degradation of cohesive properties of asphalt concrete under cyclic loading. Then the model is implemented in the finite element software ABAQUS through a user-defined subroutine. Based on the proposed model, an indirect tensile fatigue test is finally simulated. The fatigue lives obtained through numerical analysis show good agreement with laboratory results. Fatigue damage accumulates in a nonlinear manner during the cyclic loading process and damage initiation phase is the major part of fatigue failure. As the stress ratio increases, the time of the steady damage growth stage decreases significantly. It is found that the proposed fatigue damage evolution model can serve as an accurate and efficient tool for the prediction of fatigue damage of asphalt concrete. 展开更多
关键词 fatigue damage indirect tensile fatigue test asphalt concrete cohesive zone model numerical simulation finite element method
下载PDF
COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES 被引量:34
3
作者 A.P.Bunger Robert G.Jeffrey 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第5期443-452,共10页
Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient applicat... Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case. 展开更多
关键词 hydraulic fracture cohesive zone model finite element method
下载PDF
Failure simulation in resistance spot-welded lap-joints using cohesive zone modeling 被引量:5
4
作者 Mohammad Ali Saeimi SADIGH Gholamreza MARAMI Bahman PAYGOZAR 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2567-2577,共11页
This paper concentrates on simulating fracture in thin walled single-lap joints connected by resistance spot-welding(RSW)process which were subjected to tensile loading.For this purpose,three sets of lap-joints with d... This paper concentrates on simulating fracture in thin walled single-lap joints connected by resistance spot-welding(RSW)process which were subjected to tensile loading.For this purpose,three sets of lap-joints with different spot configurations were tested to achieve the joints’tensile behavior.To simulate the joints tensile behavior,firstly a 2D axisymmetric finite element(FE)model was used to calculate residual stresses induced during the welding process.Then the results were transferred to 3D models as pre-stress.In this step,cohesive zone model(CZM)technique was used to simulate fracture in the models under tensile load.Cohesive zone parameters were extracted using coach-peel and shear lap specimens.The results were employed to simulate deformation and failure in single lap spot weld samples.It has been shown that considering the residual stresses in simulating deformation and fracture load enables quite accurate predictions. 展开更多
关键词 spot-welding FRACTURE residual stress cohesive zone model(CZM)
下载PDF
Delamination analysis of woven fabrication laminates using cohesive zone model 被引量:2
5
作者 Mohsen Moslemi Mohammadreza Khoshravan azar 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期27-38,共12页
A new test method was proposed to evaluate the cohesive strength of composite laminates. Cohesive strength and the critical strain energy for Mode-II interlamiar fracture of E-glass/epoxy woven fabrication were determ... A new test method was proposed to evaluate the cohesive strength of composite laminates. Cohesive strength and the critical strain energy for Mode-II interlamiar fracture of E-glass/epoxy woven fabrication were determined from the single lap joint(SLJ) and end notch flexure(ENF) test, respectively. In order to verify their adequacy, a cohesive zone model simulation based on interface finite elements was performed. A closed form solution for determination of the penalty stiffness parameter was proposed. Modified form of Park-Paulino-Roesler traction-separation law was provided and conducted altogether with trapezoidal and bilinear mixed-mode damage models to simulate damage using Abaqus cohesive elements. It was observed that accurate damage prediction and numerical convergence were obtained using the proposed penalty stiffness. Comparison between three damage models reveals that good simulation of fracture process zone and delamination prediction were obtained using the modified PPR model as damage model. Cohesive zone length as a material property was determined. To ensure the sufficient dissipation of energy, it was recommended that at least 4 elements should span cohesive zone length. 展开更多
关键词 cohesive zone model DELAMINATION cohesive strength finite element prediction
下载PDF
Determination of key parameters of Al–Li alloy adhesively bonded joints using cohesive zone model 被引量:2
6
作者 YUAN Shun LI Yi-bo +1 位作者 HUANG Ming-hui LI Jian 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2049-2057,共9页
The key parameters of the adhesive layer of a reinforcing patch are of great significance and affect the ability to suppress crack propagation in an Al–Li alloy patch-reinforced structure.This paper proposes a method... The key parameters of the adhesive layer of a reinforcing patch are of great significance and affect the ability to suppress crack propagation in an Al–Li alloy patch-reinforced structure.This paper proposes a method to determine the key parameters of the adhesive layer of adhesively bonded joints in the Al–Li alloy patch-reinforced structure.A zero-thickness cohesive zone model(CZM)was selected to simulate the adhesive layer’s fracture process,and an orthogonal simulation was designed to compare against the test results.A three-dimensional progressive damage model of an Al–Li alloy patch-reinforced structure with single-lap adhesively bonded joints was developed.The simulation’s results closely agree with the test results,demonstrating that this method of determining the key parameters is likely accurate.The results also verify the correctness of the cohesive strength and fracture energy,the two key parameters of the cohesive zone model.The model can accurately predict the strength and fracture process of adhesively bonded joints,and can be used in research to suppress crack propagation in Al–Li alloy patch-reinforced structures. 展开更多
关键词 Al–Li alloy cohesive zone model adhesively bonded joints fracture energy
下载PDF
Numerical simulation of the mechanical behavior of superconducting tape in conductor on round core cable using the cohesive zone model 被引量:1
7
作者 Shengyi TANG Xubin PENG Huadong YONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1511-1532,共22页
Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers wit... Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers with its outstanding current-carrying capacity and mechanical properties.The REBCO tapes are wound spirally on the surface of CORC cable.Under extreme loadings,the REBCO tapes with layered composite structures are vulnerable,which can lead to degradation of critical current and even quenching of superconducting devices.In this paper,we simulate the deformation of CORC cable under external loads,and analyze the damage inside the tape with the cohesive zone model(CZM).Firstly,the fabrication and cabling of CORC are simulated,and the stresses and strains generated in the tape are extracted as the initial condition of the next step.Then,the tension and bending loads are applied to CORC cable,and the damage distribution inside the tape is presented.In addition,the effects of some parameters on the damage are discussed during the bending simulations. 展开更多
关键词 high temperature superconducting(HTS)tape superconducting cable finite element simulation cohesive zone model(CZM) DAMAGE
下载PDF
Determination of Key Cohesive Zone Model’s Parameters for Orthotropic Paper and Its Static Fracture Simulation 被引量:1
8
作者 WANG Yue WANG Yongjian LI Lingquan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期117-123,共7页
Investigation of paper cutting process is vital for the design of cutting tools,but the fracture mechanism of paper cutting is still unclear.Here,we focus on the cutting process of paper,including the key parameters o... Investigation of paper cutting process is vital for the design of cutting tools,but the fracture mechanism of paper cutting is still unclear.Here,we focus on the cutting process of paper,including the key parameters of cohesive zone model(CZM)for the orthotropic paper,to simulate the shear fracture process.Firstly,the material constants of the orthotropic paper are determined by longitudinal and transverse tensile test.Secondly,based on the tensile stressstrain curves,combined with damage theory and numerical simulations,the key parameters of the CZM for the orthotropic paper are obtained.Finally,a model III fracture is simulated to verify the accuracy of the model.Results show that the load-displacement curves obtained by the simulation is consistent with the test results. 展开更多
关键词 ORTHOTROPIC cohesive zone model(CZM) PAPER static fracture
下载PDF
CRACK PROPAGATION IN POLYCRYSTALLINE ELASTIC-VISCOPLASTIC MATERIALS USING COHESIVE ZONE MODELS 被引量:1
9
作者 吴艳青 张克实 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第4期509-518,共10页
Cohesive zone model was used to simulate two-dimensional plane strain crack propagation at the grain level model including grain boundary zones. Simulated results show that the original crack-tip may not be separated ... Cohesive zone model was used to simulate two-dimensional plane strain crack propagation at the grain level model including grain boundary zones. Simulated results show that the original crack-tip may not be separated firstly in an elastic-viscoplastic polycrystals. The grain interior's material properties (e.g. strain rate sensitivity) characterize the competitions between plastic and cohesive energy dissipation mechanisms. The higher the strain rate sensitivity is, the larger amount of the external work is transformed into plastic dissipation energy than into cohesive energy, which delays the cohesive zone rupturing. With the strain rate sensitivity decreased, the material property tends to approach the elastic-plastic responses. In this case, the plastic dissipation energy decreases and the cohesive dissipation energy increases which accelerates the cohesive zones debonding. Increasing the cohesive strength or the critical separation displacement will reduce the stress triaxiality at grain interiors and grain boundaries. Enhancing the cohesive zones ductility can improve the matrix materials resistance to void damage. 展开更多
关键词 crack propagation elasto-viscoplastic cohesive zone model POLYCRYSTAL grain boundary
下载PDF
Permeability and pressure distribution characteristics of the roadway surrounding rock in the damaged zone of an excavation 被引量:7
10
作者 Xue Yi Gao Feng +1 位作者 Liu Xingguang Liang Xin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期211-219,共9页
Research on the permeability and pressure distribution characteristics of the roadway surrounding rock in the excavation damaged zone(EDZ) is beneficial for the development of gas control technology. In this study, an... Research on the permeability and pressure distribution characteristics of the roadway surrounding rock in the excavation damaged zone(EDZ) is beneficial for the development of gas control technology. In this study, analytical solutions of stress and strain of the roadway surrounding rock were obtained, in which the creep deformation and strain softening were considered. Using the MTS815 rock mechanics testing system and a gas permeability testing system, permeability tests were conducted in the complete stress-strain process, and the evolution characteristics of permeability and strain were studied over the whole loading process. Based on the analytical solutions of stress and strain and the governing equation of gas seepage flow, this paper proposes a hydro-mechanical(HM) model, which considers three different zones around the roadway. Then the gas flow process in the roadway surrounding rock in three different zones was simulated according to the engineering geological conditions, thus obtaining the permeability and pressure distribution characteristics of the roadway surrounding rock in three different zones. These results show that the surrounding rock around the roadway can be divided into four regions-the full flow zone(FFZ), flow-shielding zone(FSZ), transitive flow zone(TFZ), and in-situ rock flow zone(IRFZ). These results could provide theoretical guidance for the improvement of gas extraction and gas control technology. 展开更多
关键词 Roadway Excavation damaged zone Viscoelastic-plastic analysis Gas flow model Permeability
下载PDF
IMPROVED COHESIVE ZONE MODEL AND ITS APPLICATION IN INTERFACE CONTACT ANALYSIS
11
作者 Y. Wang J. Chen H.B. Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第4期295-302,共8页
An improved interface cohesive zone model is developed for the simulation of interface contact, under mixed-mode loading. A new debonding initiation criterion and propagation of debonding law, taking into account the ... An improved interface cohesive zone model is developed for the simulation of interface contact, under mixed-mode loading. A new debonding initiation criterion and propagation of debonding law, taking into account the pressure stress influence on contact shear strength, is proposed. The model is implemented in a finite-element program using subroutine VUINTER of ABAQUS Explicit. An edge-notch four-point bending process and laminated vibration damping steel sheet punch forming test are simulated with the improved model in ABAQUS Explicit. The numerical predictions agree satisfactorily with the corresponding experimental results. 展开更多
关键词 Cohesive zone model Mixed mode Damage criterion Contact stress
下载PDF
Towards fully automatic modelling of the fracture process in quasi-brittle and ductile materials:a unified crack growth criterion
12
作者 Zhen-jun YANG Guo-hua LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第7期867-877,共11页
Fully automatic finite element(FE) modelling of the fracture process in quasi-brittle materials such as concrete and rocks and ductile materials such as metals and alloys,is of great significance in assessing structur... Fully automatic finite element(FE) modelling of the fracture process in quasi-brittle materials such as concrete and rocks and ductile materials such as metals and alloys,is of great significance in assessing structural integrity and presents tre-mendous challenges to the engineering community. One challenge lies in the adoption of an objective and effective crack propagation criterion. This paper proposes a crack propagation criterion based on the principle of energy conservation and the cohesive zone model(CZM) . The virtual crack extension technique is used to calculate the differential terms in the criterion. A fully-automatic discrete crack modelling methodology,integrating the developed criterion,the CZM to model the crack,a simple remeshing procedure to accommodate crack propagation,the J2 flow theory implemented within the incremental plasticity framework to model the ductile materials,and a local arc-length solver to the nonlinear equation system,is developed and im-plemented in an in-house program. Three examples,i.e.,a plain concrete beam with a single shear crack,a reinforced concrete(RC) beam with multiple cracks and a compact-tension steel specimen,are simulated. Good agreement between numerical predictions and experimental data is found,which demonstrates the applicability of the criterion to both quasi-brittle and ductile materials. 展开更多
关键词 Finite element method (FEM) Crack propagation criterion Cohesive zone model (CZM) Virtual crack extension(VCE) Arc-length method
下载PDF
Experiences and Prospects of China's Free Economic Zones after over 20 Years
13
作者 Guangwen Meng 《Chinese Business Review》 2005年第9期29-39,58,共12页
Chinese FEZs are used as the tool for opening-up policy and the structural reform as well as the growth pole for the regional economic development. It is true that no Free Economic Zones (FEZs) in the world like in ... Chinese FEZs are used as the tool for opening-up policy and the structural reform as well as the growth pole for the regional economic development. It is true that no Free Economic Zones (FEZs) in the world like in China have made so strong impact on national economic development and structural reform. Due to the change of their existing condition since the middle of 1990s, Chinese FEZs have to face the new challenges and problems. This study discusses and prospects the transformation and further development of Chinese FEZs in the 21^st century as well as their significance for the transformation of FEZs in other countries based on the analysis of the indicators such as the role, policy, industrial sectors, administration, development model, spatial structure and location. 展开更多
关键词 free economic zones China model evolution opening-up policy
下载PDF
Study on Model Establishment of Regionalization Management of Specific Equine Disease-free Zone
14
作者 PENG Cong WANG Yi-qing +10 位作者 ZHONG Cai-xin LIANG Cai-yue PENG Nan-xiu SHEN Dan PANG Wei-zhi ZHANG Guo-xi XIE Yue-you ZHONG Jiang-guo HU Yong-hui ZHANG Hai-ming CAO Ai-qiao 《Animal Husbandry and Feed Science》 CAS 2013年第3期125-130,共6页
[Objective]The model of regionalization management of specific equine disease-free zone were analysed and discussed. [Methods]International animal epidemics regionalization management experience and specific equine di... [Objective]The model of regionalization management of specific equine disease-free zone were analysed and discussed. [Methods]International animal epidemics regionalization management experience and specific equine disease-free zone establishment were analysed and discussed based on the State and OIE principles. [Results]The regionalization management of specific equine disease-free zone with county administrative regions level of international recognition was established first in China,combined with the region's geographical barrier and animal health. [Conclusion]The aim is to to provide experience and reference for other areas to establish specific disease-free zone. 展开更多
关键词 Specific equine disease-free zone(EDFZ) Regionalization management Model
下载PDF
Impact Analysis of Microscopic Defect Types on the Macroscopic Crack Propagation in Sintered Silver Nanoparticles 被引量:1
15
作者 Zhongqing Zhang Bo Wan +4 位作者 Guicui Fu Yutai Su Zhaoxi Wu Xiangfen Wang Xu Long 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期441-458,共18页
Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t... Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs. 展开更多
关键词 Sintered silver nanoparticles defect types microscopic defect evolution macroscopic crack propagation molecular dynamics simulation cohesive zone model
下载PDF
Progressive fragmentation of granular assemblies within rockslides: Insights from discrete-continuous numerical modeling
16
作者 JIANG Hui ZHOU Yuande +2 位作者 WANG Jinting DU Xiuli HUANG Hailong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1174-1189,共16页
Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive... Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios. 展开更多
关键词 Rock fragmentation ROCKSLIDE Numerical modelling Discrete-continuous modelling RUNOUT Cohesive zone model
下载PDF
Fractures interaction and propagation mechanism of multi-cluster fracturing on laminated shale oil reservoir
17
作者 Jia-Xin Lv Bing Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2600-2613,共14页
The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the... The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation. 展开更多
关键词 Laminated shale Multi-cluster fracturing CROSS-LAYER Cohesive zone model Acoustic emission technique
下载PDF
Finite Element Simulations of the Localized Failure and Fracture Propagation in Cohesive Materials with Friction
18
作者 Chengbao Hu Shilin Gong +3 位作者 Bin Chen Zhongling Zong Xingwang Bao Xiaojian Ru 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期997-1015,共19页
Strain localization frequently occurs in cohesive materials with friction(e.g.,composites,soils,rocks)and is widely recognized as a fundamental cause of progressive structural failure.Nonetheless,achieving high-fideli... Strain localization frequently occurs in cohesive materials with friction(e.g.,composites,soils,rocks)and is widely recognized as a fundamental cause of progressive structural failure.Nonetheless,achieving high-fidelity simulation for this issue,particularly concerning strong discontinuities and tension-compression-shear behaviors within localized zones,remains significantly constrained.In response,this study introduces an integrated algorithmwithin the finite element framework,merging a coupled cohesive zone model(CZM)with the nonlinear augmented finite elementmethod(N-AFEM).The coupledCZMcomprehensively describes tension-compression and compressionshear failure behaviors in cohesive,frictional materials,while the N-AFEM allows nonlinear coupled intraelement discontinuities without necessitating extra nodes or nodal DoFs.Following CZM validation using existing experimental data,this integrated algorithm was utilized to analyze soil slope failure mechanisms involving a specific tensile strength and to assess the impact of mechanical parameters(e.g.,tensile strength,weighting factor,modulus)in soils. 展开更多
关键词 FEM analysis strong discontinuity nonlinear soil rupture cohesive zone model tension-compression-shear coupling
下载PDF
Constitutive Behavior of the Interface between UHPC and Steel Plate without Shear Connector:From Experimental to Numerical Study
19
作者 Zihan Wang Boshan Zhang +2 位作者 Hui Wang Qing Ai Xingchun Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1863-1888,共26页
The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,... The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,namely,the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface,the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated.This study develops constitutive models for these two interfaces without shear connectors,based on the interfacial pull-off and push-out tests.For validation,three-point bending tests on the steel-UHPC composite plates are conducted.The results indicated that the proposed bilinear traction-separation model for the sandblasted interface and the trapezoidal traction-separation model for the epoxy adhesive with sprinkled basalt aggregate interface can generally calibrate the interfacial behavior.However,the utilization of the experimentally determined pure shear strength underestimates the load-carrying capacity of the composite plates in the case of three-point bending tests.By recalling the Mohr-Coulomb criterion,this underestimation is attributed to the enhancement of the interface shear strength by the presence of normal stress. 展开更多
关键词 Cohesive zone model interfacial behavior finite element simulation UHPC steel plate
下载PDF
Effect of intermittent joint distribution on the mechanical and acoustic behavior of rock masses
20
作者 Shuaiyang Fu Haibo Li +2 位作者 Liwang Liu Di Wu Ben Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1231-1244,共14页
The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers an... The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers and dip angles were produced using the finite element method(FEM)with the intrinsic cohesive zone model(ICZM).Then,the uniaxial compressive and wave propagation simulations were performed.The results indicate that the joint number and dip angle can affect the mechanical and acoustic properties of the models.The uniaxial compressive strength(UCS)and wave velocity of rock masses decrease monotonically as the joint number increases.However,the wave velocity grows monotonically as the joint dip angle increases.When the joint dip angle is 45°–60°,the UCS of the rock mass is lower than that of other dip angles.The wave velocity parallel to the joints is greater than that perpendicular to the joints.When the dip angle of joints remains unchanged,the UCS and wave velocity are positively related.When the joint dip angle increases,the variation amplitude of the UCS regarding the wave velocity increases.To reveal the effect of the joint distribution on the velocity,a theoretical model was also proposed.According to the theoretical wave velocity,the change in wave velocity of models with various joint numbers and dip angles was consistent with the simulation results.Furthermore,a theoretical indicator(i.e.fabric tensor)was adopted to analyze the variation of the wave velocity and UCS. 展开更多
关键词 Stochastic joints Intrinsic cohesive zone model Uniaxial compressive strength(UCS) Wave propagation Fabric tensor
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部