With the deepening of research in the tectonic evolution and stress fields of China in Meso-Cenozoic, some aspects of the Previous conclusion about the tectonogeomorphology of China are found to be open to question. T...With the deepening of research in the tectonic evolution and stress fields of China in Meso-Cenozoic, some aspects of the Previous conclusion about the tectonogeomorphology of China are found to be open to question. The author considers that the Sichuanian stage (135-52 Ma ) is the embryonic stage for forming the recent landform in eastern China;the appearance of the mountain ranges and drainage basin areas trending in east-west are the results of the north - south directional extension during the North Sinian stage(52 - 23.3 Ma );the formation of five mega - Step landforms from the Qinghai - Xizang Plateau to Pacific ocean and the seafloor spreading basins in the eastern margin of Asian continent as well as the l- up of drainage systems of both Yangtze and Yellow rivers are related to the northward compression, cast-west trending extension and the isostatic compensation of crust during Himalayan Stage (23.3-0.73 Ma ). Through the above three Stages of tectonic processes, a framework of landform of China finally took shape in the main.展开更多
The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-...The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate,and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis,and indicates initiation of the Paleo-Pacific(Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.展开更多
The Queshan MCC is an important example of a crustal extensional structure in the eastern Jiaodong Peninsula along the southeastern margin of the NCC in the Early Cretaceous. The MCC is a typical Cordilleran-type core...The Queshan MCC is an important example of a crustal extensional structure in the eastern Jiaodong Peninsula along the southeastern margin of the NCC in the Early Cretaceous. The MCC is a typical Cordilleran-type core complex with a three-layered structure:(1) the upper plate is constituted by the Cretaceous supradetachment basin and Paleoproterozoic basement;(2) the lower plate comprises the Neoarchean high-grade metamorphic complexes and late Mesozoic granitic intrusions; and(3) the two plates are separated by a master detachment fault. A series of late NEN-oriented brittle faults superimposed on and destructed the early MCC. Petrology, geometry, kinematics, macro- and micro-structures and quartz c-axis fabrics imply that the MCC has a progressive exhumation history from middle-lower to subsurface level(via middle-upper crustal level) under the nearly WNW-ESE regional extensional regime. We present structural and geochronological evidence to constrain the exhumation of the Queshan MCC from ca. 135 to 113 Ma. Based on the comprehensive analysis of the different patterns of extensional structures in the Jiaodong and Liaodong Peninsula, we have defined the Jiao-Liao Early Cretaceou extensional province and further divided the crustal extension of it into two stages: the first stage was the intense flow of the middle-lower crust and the second stage was the extension of the middle-upper crust. Combining the tectonic setting, the lithosphere thinning in the Jiao-Liao Early Cretaceous extensional province can be considered a typical model for the response of crust-mantle detachment faulting under regional extension in East Asia.展开更多
文摘With the deepening of research in the tectonic evolution and stress fields of China in Meso-Cenozoic, some aspects of the Previous conclusion about the tectonogeomorphology of China are found to be open to question. The author considers that the Sichuanian stage (135-52 Ma ) is the embryonic stage for forming the recent landform in eastern China;the appearance of the mountain ranges and drainage basin areas trending in east-west are the results of the north - south directional extension during the North Sinian stage(52 - 23.3 Ma );the formation of five mega - Step landforms from the Qinghai - Xizang Plateau to Pacific ocean and the seafloor spreading basins in the eastern margin of Asian continent as well as the l- up of drainage systems of both Yangtze and Yellow rivers are related to the northward compression, cast-west trending extension and the isostatic compensation of crust during Himalayan Stage (23.3-0.73 Ma ). Through the above three Stages of tectonic processes, a framework of landform of China finally took shape in the main.
基金supported by the National Natural Science Foundation of China(Grant Nos.41472186&91414301)the National Key Basic Research Program of China(Grant No.2016YFC0600102)
文摘The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate,and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis,and indicates initiation of the Paleo-Pacific(Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41430211, 90814006 & 91214301)Doctoral Foundation of Ministry of Education of China (Grant No. 20110022130001)
文摘The Queshan MCC is an important example of a crustal extensional structure in the eastern Jiaodong Peninsula along the southeastern margin of the NCC in the Early Cretaceous. The MCC is a typical Cordilleran-type core complex with a three-layered structure:(1) the upper plate is constituted by the Cretaceous supradetachment basin and Paleoproterozoic basement;(2) the lower plate comprises the Neoarchean high-grade metamorphic complexes and late Mesozoic granitic intrusions; and(3) the two plates are separated by a master detachment fault. A series of late NEN-oriented brittle faults superimposed on and destructed the early MCC. Petrology, geometry, kinematics, macro- and micro-structures and quartz c-axis fabrics imply that the MCC has a progressive exhumation history from middle-lower to subsurface level(via middle-upper crustal level) under the nearly WNW-ESE regional extensional regime. We present structural and geochronological evidence to constrain the exhumation of the Queshan MCC from ca. 135 to 113 Ma. Based on the comprehensive analysis of the different patterns of extensional structures in the Jiaodong and Liaodong Peninsula, we have defined the Jiao-Liao Early Cretaceou extensional province and further divided the crustal extension of it into two stages: the first stage was the intense flow of the middle-lower crust and the second stage was the extension of the middle-upper crust. Combining the tectonic setting, the lithosphere thinning in the Jiao-Liao Early Cretaceous extensional province can be considered a typical model for the response of crust-mantle detachment faulting under regional extension in East Asia.