Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring(EMS) and the addit...Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring(EMS) and the addition of Sc and Zr elements were used to prepare semisolid slurry of 7A04 aluminum alloy in a large diameter slurry maker. The effects of different treatments on the microstructure, composition and their radial homogeneity were investigated. The results show that, compared to the slurry without any treatment, large volume slurry with finer and more uniform microstructure can be obtained when treated by EMS, Sc, or Zr additions individually. EMS is more competent in the microstructural and chemical homogenization of the slurry while Sc and Zr additions are more excellent in its microstructural refinement. The combined treatment of EMS, Sc and Zr produces premium 7A04 aluminum alloy slurry with uniformly distributed fine α-Al globules and composition. The interaction mechanism between EMS and Sc and Zr additions was also discussed.展开更多
This work studied the effects of adding Zr and Mn in amounts less than 1wt%on the microstructure,mechanical properties,casting properties,and corrosion resistance of Mg-Zn-Cu alloys containing 2.5wt%Cu and 2.5wt%-6.5w...This work studied the effects of adding Zr and Mn in amounts less than 1wt%on the microstructure,mechanical properties,casting properties,and corrosion resistance of Mg-Zn-Cu alloys containing 2.5wt%Cu and 2.5wt%-6.5wt%Zn.The hardness and electrical conductivity measurements were used to find an optimal heat treatment schedule with the best mechanical properties.It has been established that Zr significantly increases the yield strength of the alloys due to a strong grain refinement effect.However,the presence of Mn and Zr has a detrimental effect on alloy’s elongation at fracture.It was shown that the precipitation of the Mg_(2)Cu cathodic phase in the alloy structure negatively affects the corrosion behavior.Nevertheless,the addition of Mn decreases the corrosion rate of the investigated alloys.The best combination of the mechanical,casting,and corrosion properties were achieved in the alloys containing 2.5wt%Cu and 5wt%Zn.However,the Mn or Zr addition can improve the properties of the alloys;for example,the addition of Mn or Zr increases the fluidity of the alloys.展开更多
The influence of Zr addition on magnetic properties and temperature coefficient for nanocomposite Nd10Fe78.5-xCo5ZrxB6.5 (x=0~4) bonded magnets was investigated. It was found that the room-temperature magnetic proper...The influence of Zr addition on magnetic properties and temperature coefficient for nanocomposite Nd10Fe78.5-xCo5ZrxB6.5 (x=0~4) bonded magnets was investigated. It was found that the room-temperature magnetic properties were remarkably improved with Zr addition due to the grain refinement and increasing volume fraction of the hard magnetic phase. The optimal magnetic properties of Jr=0.689 T, iHc=769.4 kA·m-1 and (BH)max=84 kJ·m-3 were obtained for 2.5% Zr addition. The temperature coefficient of remanence (α) increases slightly and the temperature coefficient of coercivity (β) decreases obviously with increasing Zr content for nanocomposite Nd10Fe78.5-xCo5ZrxB6.5 (x=0~4) bonded magnets.展开更多
Melt-spun Nd9.5Fe81Zr3B6.5 ribbons were prepared by the melt-spinning technique. The phase evolution and magnetic properties were studied by X-ray diffraction, differential scanning calorimetry, transmission electron ...Melt-spun Nd9.5Fe81Zr3B6.5 ribbons were prepared by the melt-spinning technique. The phase evolution and magnetic properties were studied by X-ray diffraction, differential scanning calorimetry, transmission electron microscopy observations, and magnetization measurements. It is indicated that melt spinning at different wheel velocities caused the as-quenched ribbons to have distinctive structure. The phase transformation of the ribbons during annealing takes place in two steps: α-Fe transforms from the amorphous phase firstly, followed by formation of Nd2Fe14B phase. With increasing the initial quenching rate, the microstructure of optimally heat treated ribbons becomes coarser, which results in the weakening of the exchange coupling effect between the hard and soft phase. This leads to drastic deterioration of magnetic properties of annealed ribbons with increasing the initial quenching rate.展开更多
Catalytic dehydrogenation represents one of the most effective methods for converting low-carbon hydrocarbons into monoolefins and hydrogen with identical carbon numbers.In this study,microporous(HZSMi)and meso-microp...Catalytic dehydrogenation represents one of the most effective methods for converting low-carbon hydrocarbons into monoolefins and hydrogen with identical carbon numbers.In this study,microporous(HZSMi)and meso-microporous molecular sieves(HZSMu)with a Si/Al atomic ratio of 150,synthesized in the laboratory,were prepared via hydrothermal synthesis.These supports were impregnated with 2.4%Co using the incipient wetness impregnation method and subsequently modified by introducing the metal additives Zr and Sn.Notably,the Co-Sn/HZSMu catalyst exhibited the highest stability,achieving a propylene selectivity of 95.3% within 400 min while maintaining robust activity.A series of characterization analyses reveal that the HZSMu molecular sieve possesses distinctive weaving properties.The synergistic effect between mesopores facilitates the adsorption and activation of reactants while preventing pore blockage,thus promoting the rapid diffusion of reactants on its surface.The incorporation of the metal additive Sn promotes the uniform dispersion of Co,mitigating the occurrence of side reactions and enhancing the catalytic performance and reaction stability of the catalyst.展开更多
High strength and low corrosion resistance are always the contradiction in Al-Si-Cu-Mg cast alloy due to introducing high Cu and Mg levels.In this work,the new strategy was achieved for enhancing corrosion resistance ...High strength and low corrosion resistance are always the contradiction in Al-Si-Cu-Mg cast alloy due to introducing high Cu and Mg levels.In this work,the new strategy was achieved for enhancing corrosion resistance and mechanical properties by regulating multi-scale microstructure characteristics in Al-9Si-4.2Cu-0.25Mg-Zr alloy.Electrochemical and corrosion morphology results indicate that the addition of Zr significantly enhances the corrosion resistance of the alloy.The grain refinement inhibits the charge transfer process between cathode phases and the matrix is the main reason at the Zr level of less than 0.15%.When the Zr level is up to 0.3%,the multi-scale synergistic effect of grain refinement and passive film enhancement significantly inhibits the corrosion process.Moreover,0.3%Zr addition increases the yield strength to 419 MPa,tensile strength to 490 MPa,and the acceptable fracture elongation to 3.8%.The strengthening of mechanical and corrosion properties originates from the nano-Al3Zr precipitates after T6 treatment.This study provides a novel micro-mechanism and design strategy for simultaneously improving corrosion resistance and enhancing the mechanical properties of Al-Si-Cu-Mg cast alloy.展开更多
Effects of N and Zr on the as-cast microstructure and properties after annealing of high-speed steel (HSS) were investigated by using electronic probe micro-analysis, Rockwell hardness test, X-ray diffractometry and...Effects of N and Zr on the as-cast microstructure and properties after annealing of high-speed steel (HSS) were investigated by using electronic probe micro-analysis, Rockwell hardness test, X-ray diffractometry and differential scanning calorimetry with combination of microstructure analysis. The results indicate that the addition of N and Zr will refine the eutectic structures and enhance the stability of carbides which are mainly MC, M2C and M7C3. The coarse dendritic structures decrease significantly and most of the carbides are distributed in the microstructure uniformly. Moreover, a kind of Zr-Si compound which only exists in VC is discovered, and this new phase is speculated to be related with the spheroidization of VC. The annealing process is set up to 6 different time periods which are 1, 3, 6, 10, 15 and 20 h, respectively. In different annealing processes at 750 ℃ which is lower than austenitizing temperature, the addition of N and Zr makes the decrease of hardness more obvious and restrains the precipitation of secondary carbides with the extension of time. Moreover, when the annealing time reaches 20 h, some clusters appear in the matrix of the two samples, and the density of clusters in HSS1 is lower, but the matrix of HSS1 contains more C and alloying elements which indicate more carbides precipitate.展开更多
基金financially supported by the National Key Technology R&D Program(2015BAG12B01)the National Natural Science Foundation of China(11672251)the State Key Lab of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2015-10)
文摘Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring(EMS) and the addition of Sc and Zr elements were used to prepare semisolid slurry of 7A04 aluminum alloy in a large diameter slurry maker. The effects of different treatments on the microstructure, composition and their radial homogeneity were investigated. The results show that, compared to the slurry without any treatment, large volume slurry with finer and more uniform microstructure can be obtained when treated by EMS, Sc, or Zr additions individually. EMS is more competent in the microstructural and chemical homogenization of the slurry while Sc and Zr additions are more excellent in its microstructural refinement. The combined treatment of EMS, Sc and Zr produces premium 7A04 aluminum alloy slurry with uniformly distributed fine α-Al globules and composition. The interaction mechanism between EMS and Sc and Zr additions was also discussed.
基金financial support form the Ministry of Science and Higher Education of the Russian Federation in the framework of MegaGrant(No.220-7868-7477)。
文摘This work studied the effects of adding Zr and Mn in amounts less than 1wt%on the microstructure,mechanical properties,casting properties,and corrosion resistance of Mg-Zn-Cu alloys containing 2.5wt%Cu and 2.5wt%-6.5wt%Zn.The hardness and electrical conductivity measurements were used to find an optimal heat treatment schedule with the best mechanical properties.It has been established that Zr significantly increases the yield strength of the alloys due to a strong grain refinement effect.However,the presence of Mn and Zr has a detrimental effect on alloy’s elongation at fracture.It was shown that the precipitation of the Mg_(2)Cu cathodic phase in the alloy structure negatively affects the corrosion behavior.Nevertheless,the addition of Mn decreases the corrosion rate of the investigated alloys.The best combination of the mechanical,casting,and corrosion properties were achieved in the alloys containing 2.5wt%Cu and 5wt%Zn.However,the Mn or Zr addition can improve the properties of the alloys;for example,the addition of Mn or Zr increases the fluidity of the alloys.
基金Project supported bythe National Natural Science Foundation of China (50671059)
文摘The influence of Zr addition on magnetic properties and temperature coefficient for nanocomposite Nd10Fe78.5-xCo5ZrxB6.5 (x=0~4) bonded magnets was investigated. It was found that the room-temperature magnetic properties were remarkably improved with Zr addition due to the grain refinement and increasing volume fraction of the hard magnetic phase. The optimal magnetic properties of Jr=0.689 T, iHc=769.4 kA·m-1 and (BH)max=84 kJ·m-3 were obtained for 2.5% Zr addition. The temperature coefficient of remanence (α) increases slightly and the temperature coefficient of coercivity (β) decreases obviously with increasing Zr content for nanocomposite Nd10Fe78.5-xCo5ZrxB6.5 (x=0~4) bonded magnets.
基金Projects(51201109,51001076)supported by the National Natural Science Foundation of ChinaProject(T201108)supported by Shenzhen Key Laboratory of Special Functional Materials,China
文摘Melt-spun Nd9.5Fe81Zr3B6.5 ribbons were prepared by the melt-spinning technique. The phase evolution and magnetic properties were studied by X-ray diffraction, differential scanning calorimetry, transmission electron microscopy observations, and magnetization measurements. It is indicated that melt spinning at different wheel velocities caused the as-quenched ribbons to have distinctive structure. The phase transformation of the ribbons during annealing takes place in two steps: α-Fe transforms from the amorphous phase firstly, followed by formation of Nd2Fe14B phase. With increasing the initial quenching rate, the microstructure of optimally heat treated ribbons becomes coarser, which results in the weakening of the exchange coupling effect between the hard and soft phase. This leads to drastic deterioration of magnetic properties of annealed ribbons with increasing the initial quenching rate.
基金supported by the National Natural Science Foundation of China(Grant No.21968034).
文摘Catalytic dehydrogenation represents one of the most effective methods for converting low-carbon hydrocarbons into monoolefins and hydrogen with identical carbon numbers.In this study,microporous(HZSMi)and meso-microporous molecular sieves(HZSMu)with a Si/Al atomic ratio of 150,synthesized in the laboratory,were prepared via hydrothermal synthesis.These supports were impregnated with 2.4%Co using the incipient wetness impregnation method and subsequently modified by introducing the metal additives Zr and Sn.Notably,the Co-Sn/HZSMu catalyst exhibited the highest stability,achieving a propylene selectivity of 95.3% within 400 min while maintaining robust activity.A series of characterization analyses reveal that the HZSMu molecular sieve possesses distinctive weaving properties.The synergistic effect between mesopores facilitates the adsorption and activation of reactants while preventing pore blockage,thus promoting the rapid diffusion of reactants on its surface.The incorporation of the metal additive Sn promotes the uniform dispersion of Co,mitigating the occurrence of side reactions and enhancing the catalytic performance and reaction stability of the catalyst.
基金National Natural Science Foundation of China(Grants No.52004168)Research Fund for International Senior Scientists(Grants No.52150710544)+2 种基金National Natural Science Foundation of China(Grants Nos.52171043 and 51771066)Open Fund for State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grants No.32115007)Aluminum-based Transportation Lightweighting Technology Demonstration Project(Grants No.2021SFGC1001).
文摘High strength and low corrosion resistance are always the contradiction in Al-Si-Cu-Mg cast alloy due to introducing high Cu and Mg levels.In this work,the new strategy was achieved for enhancing corrosion resistance and mechanical properties by regulating multi-scale microstructure characteristics in Al-9Si-4.2Cu-0.25Mg-Zr alloy.Electrochemical and corrosion morphology results indicate that the addition of Zr significantly enhances the corrosion resistance of the alloy.The grain refinement inhibits the charge transfer process between cathode phases and the matrix is the main reason at the Zr level of less than 0.15%.When the Zr level is up to 0.3%,the multi-scale synergistic effect of grain refinement and passive film enhancement significantly inhibits the corrosion process.Moreover,0.3%Zr addition increases the yield strength to 419 MPa,tensile strength to 490 MPa,and the acceptable fracture elongation to 3.8%.The strengthening of mechanical and corrosion properties originates from the nano-Al3Zr precipitates after T6 treatment.This study provides a novel micro-mechanism and design strategy for simultaneously improving corrosion resistance and enhancing the mechanical properties of Al-Si-Cu-Mg cast alloy.
文摘Effects of N and Zr on the as-cast microstructure and properties after annealing of high-speed steel (HSS) were investigated by using electronic probe micro-analysis, Rockwell hardness test, X-ray diffractometry and differential scanning calorimetry with combination of microstructure analysis. The results indicate that the addition of N and Zr will refine the eutectic structures and enhance the stability of carbides which are mainly MC, M2C and M7C3. The coarse dendritic structures decrease significantly and most of the carbides are distributed in the microstructure uniformly. Moreover, a kind of Zr-Si compound which only exists in VC is discovered, and this new phase is speculated to be related with the spheroidization of VC. The annealing process is set up to 6 different time periods which are 1, 3, 6, 10, 15 and 20 h, respectively. In different annealing processes at 750 ℃ which is lower than austenitizing temperature, the addition of N and Zr makes the decrease of hardness more obvious and restrains the precipitation of secondary carbides with the extension of time. Moreover, when the annealing time reaches 20 h, some clusters appear in the matrix of the two samples, and the density of clusters in HSS1 is lower, but the matrix of HSS1 contains more C and alloying elements which indicate more carbides precipitate.