ZrN/W multilayered coatings with different modulation periods at the nanoscale have been synthesized at different N+ beam bombarding energies using IBAD. Various characterization techniques such as XRD, AES, nano inde...ZrN/W multilayered coatings with different modulation periods at the nanoscale have been synthesized at different N+ beam bombarding energies using IBAD. Various characterization techniques such as XRD, AES, nano indenter and profiler were employed to investigate the influence of modulation period and bombarding energy on microstructure and mechanical properties of the coatings. The results showed that all superlattice coatings had better mechanical properties than the monolithic ZrN and W coatings. At an optimal condition with 300 eV N+ beam bombarding energy and 8―9 nm modulation period, XRD pattern possessed a sig- nificantly structural mixture of strong ZrN (111), W (110), as well as weak ZrN (220) textures in the multilayered coating. The optimal condition resulted in higher hardness (26 GPa), elastic modulus (310 GPa) and fracture resistance of the coat- ing than other conditions.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 50472026)
文摘ZrN/W multilayered coatings with different modulation periods at the nanoscale have been synthesized at different N+ beam bombarding energies using IBAD. Various characterization techniques such as XRD, AES, nano indenter and profiler were employed to investigate the influence of modulation period and bombarding energy on microstructure and mechanical properties of the coatings. The results showed that all superlattice coatings had better mechanical properties than the monolithic ZrN and W coatings. At an optimal condition with 300 eV N+ beam bombarding energy and 8―9 nm modulation period, XRD pattern possessed a sig- nificantly structural mixture of strong ZrN (111), W (110), as well as weak ZrN (220) textures in the multilayered coating. The optimal condition resulted in higher hardness (26 GPa), elastic modulus (310 GPa) and fracture resistance of the coat- ing than other conditions.