The aim of the present research is to provide a technique for preparing open-cell Al2O3-ZrO2 ceramic foams with uniform cell size.This technique used plant seeds to array templates and centrifugal slip casting to obta...The aim of the present research is to provide a technique for preparing open-cell Al2O3-ZrO2 ceramic foams with uniform cell size.This technique used plant seeds to array templates and centrifugal slip casting to obtain cell struts with high packing density.Aqueous Al2O3-ZrO2 slurries with up to 50 vol.% solid contents were prepared and the rheological characteristic of the slurries was investigated.Consolidation was performed at an acceleration of 2,860 g for 60 min.The effect of the characteristic of plant seeds on the drying behavior of Al2O3-ZrO2 green compact was analyzed.The effects of the solid contents of slurries on segregation phenomena of Al2O3 and ZrO2 particles and green compact uniformity were investigated.The compressive stress-strain curve and deformation behavior of Al2O3-ZrO2 ceramic foams prepared using plant seed template were analyzed.The results showed segregation phenomenon is negligible for highly stable slurry with 50 vol.% solid loading.The prepared cell struts of Al2O3-ZrO2 foams have high green density (61.9% TD), sintered density (99.1% TD) and homogeneous microstructure.When sintered at 1,550 ℃ for 2 h, the cell size of Al2O3-ZrO2 foam is approximately uniform and the diameter is about 1.1 mm.The porosity and compressive strength of sintered products is 66.2% and 5.86 MPa, respectively.展开更多
In present study, BP neural network model was proposed for the prediction of ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The inputs of the BP neural network mo...In present study, BP neural network model was proposed for the prediction of ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The inputs of the BP neural network model were the applied load on the epispastic polystyrene template (F), centrifugal acceleration (v) and sintering temperature (T), while the only output was the ultimate compressive strength ((7). According to the registered BP model, the effects of F, v, T on 0 were analyzed. The predicted results agree with the actual data within reasonable experimental error, indicating that the BP model is practically a very useful tool in property prediction and process parameter design of the Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting.展开更多
Effects of interlayer composition on bonding strength and interfacial microstructure of green joined CePO_4-ZrO_2 ceramics were studied. Green bodies of 25%CePO_4/ZrO_2 and ZrO_2 ceramics were joined by using interlay...Effects of interlayer composition on bonding strength and interfacial microstructure of green joined CePO_4-ZrO_2 ceramics were studied. Green bodies of 25%CePO_4/ZrO_2 and ZrO_2 ceramics were joined by using interlayer composed of CePO_4 and ZrO_2 at 1450 ℃ for 120 min without applied pressure.The effects of CePO_4/(CePO_4+ZrO_2) ratio on the bond strength of the joints were investigated. Under the experimental conditions, the grain size of the particles grown in the joint is smaller than those in joined ceramics. The microstructure of the joint is more homogeneous than that of the matrix and without obvious cracks, pores and other defects.展开更多
BP neural network was used in this study to model the porosity and the compressive strength of a gradient Al2Q-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The influences of the load applied on the e...BP neural network was used in this study to model the porosity and the compressive strength of a gradient Al2Q-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The influences of the load applied on the epispastic polystyrene template (F), the centrifugal acceleration (V) and sintering temperature (T) on the porosity (P) and compressive strength (a) of the sintered products were studied by using the registered three-layer BP model. The accuracy of the model was verified by comparing the BP model predicted results with the experimental ones. Results show that the model prediction agrees with the experimental data within a reasonable experimental error, indicating that the three-layer BP network based modeling is effective in predicting both the properties and processing parameters in designing the gradient Al203-ZrO2 ceramic foam filter. The prediction results show that the porosity percentage increases and compressive strength decreases with an increase in the applied load on epispastic polystyrene template. As for the influence of sintering temperature, the porosity percentage decreases monotonically with an increase in sintering temperature, yet the compressive strength first increases and then decreases slightly in a given temperature range. Furthermore, the porosity percentage changes little but the compressive strength first increases and then decreases when the centrifugal acceleration increases.展开更多
ZrO2-Y2O3 ceramic coating was produced by plasma electrolytic oxidation (PEO) on ZAlSil2Cu3Ni2 alloy. The microstructure and phase composition of the coating were investigated by SEM and XRD.: The results show that...ZrO2-Y2O3 ceramic coating was produced by plasma electrolytic oxidation (PEO) on ZAlSil2Cu3Ni2 alloy. The microstructure and phase composition of the coating were investigated by SEM and XRD.: The results show that adding an appropriate amount of yttrium ion can improve the growing rate of ceramic coating at different oxidation stages and decrease arc voltage. The thickness of ZrO2-Y2O3 coating is 16 μn thicker than that of ZrO2 coating and the maximum oxidation rate improves by 0.6 μm/min. In addition, the arc voltage decreases from 227 to 172 V. It can be seen that the rate of oxidation firstly increases to some extent and then decreases with the content of yttrium ion increasing. The growth rate reaches the maximum while the content of yttrium ion is 0.05 g-L-1The maximum thickness is 90 μm.Compared to ZrO2 coating, the micropores of ZrO2-Y2O3 coating are less and the ceramic layer is repeatedly deposited by ZrO2 and Y2O3 ceramic particles. Meanwhile, the binding force between coating and substrate is better and the coating is uniform and compact. The ceramic layer is mainly composed of c-Y0.15Zr0.85O1.93□0.07, m-ZrO2, α-Al2O3, ,γ-Al2O3 and Y2O3. It is indicated that ZrO2 has beert fully stabilized by yttrium ion through the formation of solid solution.展开更多
The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength ...The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.展开更多
The oxidation kinetics of O'-SiAlON-ZrO2 composite ceramics in the temperature range of 1373-1773K has been studied. The oxidation experiments with powder and plates of O'-SiAlON-ZrO2 composite ceramics in air...The oxidation kinetics of O'-SiAlON-ZrO2 composite ceramics in the temperature range of 1373-1773K has been studied. The oxidation experiments with powder and plates of O'-SiAlON-ZrO2 composite ceramics in air have been carried out. The overall activation energy of oxidation reaction is 263.69 kJ/mol. The products and structures of O'-SiAlON-ZrO2 oxidation layer have been analysed by XRD (X-ray diffraction), SEM (scanning electron microscope) and AFM (atomic force microscope).展开更多
With the help of the ceramic foam research efforts and preparation techniques, the ZrO2 polycrystalline ceramic foam catalyst was synthesized, and its characteristics, including the crystal structure, the phase compos...With the help of the ceramic foam research efforts and preparation techniques, the ZrO2 polycrystalline ceramic foam catalyst was synthesized, and its characteristics, including the crystal structure, the phase composition, the acid–base properties, and the microstructure, were analyzed by XRD, SEM, Py-IR, and BET techniques. The performance of the ZrO2 polycrystalline ceramic foam catalyst in a tubular reactor was investigated via biodiesel synthesis using S. wilsoniana oil and methanol. The effects of reaction conditions(i.e., reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil) on transesterification efficiency were investigated, and the reaction conditions were optimized using RSM. The optimum reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil were determined to be 290 ℃, 10 MPa, and 4:1, respectively. Under this condition, the FAME content in the product oil reached 98.38%. The performance of the ZrO2 polycrystalline ceramic foam catalyst synthesized in this work for biodiesel synthesis from S. wilsoniana oil with a moisture content of 7.1% and an acid value of 130.697 mg KOH/g was examined, and the FAME content in the product oil was found to be 93% and 97.67%, respectively. The FAME content in the product oil exceeded 97% after five consecutive cycles(12 h per cycle of use) of the catalyst. The proposed catalyst represents a new type of solid catalyst with excellent acid resistance, water resistance, esterification efficiency, and catalytic stability.展开更多
Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO...Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.展开更多
The microwave dielectric properties of ZrO2-SnO2-TiO2 (ZST) system ceramics were studied as a function of the amount of Sb2O5 dopant. With the addition of 0-0.5% Sb2O5(molar ratio), the substitution of Ti4^+ ions...The microwave dielectric properties of ZrO2-SnO2-TiO2 (ZST) system ceramics were studied as a function of the amount of Sb2O5 dopant. With the addition of 0-0.5% Sb2O5(molar ratio), the substitution of Ti4^+ ions with Sb^5+ ions decreased the sintering temperature and increased the quality factor Q due to the reduction of oxygen vacancies, When the amount of Sb^5+ increased further (above 0.5%), Q was decreased by increasing the electron concentration. When the system doped with 0.5% Sb2O5 was sintered at 1 150℃ for 6 h, the relative dielectric constant ε, Qf0, and the temperature coefficient of resonant frequency (TCF) were 38.46, 44 500 GHz, 20.0×10^-6/℃, respectively, at 6 GHz,展开更多
The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of...The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of ZrO_(2)for TiO_(2)is not conductive to precipitate𝛽β-quartz solid solution phase,but can improve the transparency and flexural strength of glass-ceramics.And the glass-ceramic with the highest visible light transmittance(87%)and flexural strength(231.80 MPa)exhibits an ultra-low thermal expansion of-0.028×10^(-7)K^(-1)in the region of 30-700℃.展开更多
ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to...ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.展开更多
A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this stud...A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this study.The good low-firing effects are presented due to the high matching relevance between Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass and MgTa_(2)O_(6)ceramics.The pure tri-rutile MgTa_(2)O_(6)structure remains unchanged,and high sintering compactness can also be achieved at 1150℃.We found that the Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass not only greatly improves the low-temperature sintering characteristics of MgTa_(2)O_(6)ceramics but also maintains a high(quality factor(Q)×resonance frequency(f))value while still improving the temperature stability.Typically,great microwave dielectric characteristics when added with 2wt%Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass can be achieved at 1150℃:dielectric constant,ε_(r)=26.1;Q×f=34267 GHz;temperature coefficient of resonance frequency,τ_(f)=-8.7×10^(-6)/℃.展开更多
Er^(3+),Na^(+)co-doped CaF_(2) transparent ceramics with Er^(3+)dopant concentration of 3% and Na^(+) of 0%,0.5%,1.0%,1.5% and 2.0% were fabricated by the vacuum hot pressing method with 16 mm in diameter and 3 mm in ...Er^(3+),Na^(+)co-doped CaF_(2) transparent ceramics with Er^(3+)dopant concentration of 3% and Na^(+) of 0%,0.5%,1.0%,1.5% and 2.0% were fabricated by the vacuum hot pressing method with 16 mm in diameter and 3 mm in thickness.The average grain size of the obtained Er,Na∶CaF_(2) powders varied from 28 nm to 36 nm with the shape of sphere.The effects of Na^(+) doping on the transmittance,microstructure and spectral properties of Er^(3+)∶CaF_(2) transparent ceramics were investigated.The transmittance of all the obtained ceramic samples is above 84%in the wavelength of 1000 nm.The results show that after introducing Na^(+)into Er^(3+)∶CaF_(2) transparent ceramics,charge-neutralized Er^(3+)-Na^(+) structure formed which prevent Er^(3+) from clustering.The emission spectra of Er^(3+) in CaF_(2) transparent ceramics at around 1.5 and 2.7μm could be modulated by adjusting the concentration of Na^(+) and the near-infrared fluorescence lifetime at around 1.5μm increase with the increasing of Na^(+) concentration,reaching a maximum of 56.75 ms.展开更多
To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different t...To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different thickness configurations.The damage and failure modes of hard projectiles and ceramic-fiber composite targets were analyzed.The recovered projectiles and ceramic fragments were sieved and weighed at multiple stages,revealing a positive correlation between the degree of fragmentation of the projectiles and ceramics and the overall ballistic resistance of the composite targets.Numerical simulations were performed using the LS-DYNA finite element software,and the simulation results showed high consistency with the experimental results,confirming the validity of the material parameters.The results indicate that the projectile heads primarily exhibited crushing and abrasive fragmentation.Larger projectile fragments mainly resulted from tensile and shear stress-induced failure.The failure modes of the composite targets included the formation of ceramic cones and radial cracks under high-velocity impacts.The UHMWPE laminated plates exhibited interlayer separation caused by tensile waves,permanent plastic deformation of the rear surface bulging,and perforation failure primarily due to shear forces.Through extended numerical simulations,while maintaining the same areal density and configuration of9 mm Al_(2)O_(3) ceramic+12 mm UHMWPE laminated composite armor,the thickness configurations of the Al_(2)O_(3) ceramic and UHMWPE laminated backplates were varied,and various thicknesses of UHMWPE laminates were simulated as the cover layer for the ceramic panels.The simulation results indicated that the composite armor configuration of 10 mm Al_(2)O_(3) ceramic+8 mm UHMWPE composite armor increased energy absorption by13.48%.When altering the cover layer thickness,a 4 mm UHMWPE+9 mm Al_(2)O_(3)+8 mm UHMWPE composite armor demonstrated a 27.11%improvement in energy absorption,showing a relatively significant enhancement.展开更多
Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different conce...Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients.The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics,which makes it not easy to extend the sample data by additional experimental or theoretical calculations.In this paper,a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components.In contrast to all-data-driven model,physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties.Based on the model outputs,the positions of morphotropic phase boundary(MPB)with different Sm doping amounts are explored.We also find the components with the best piezoelectric property and comprehensive performance.Moreover,we set up a database according to the obtained results,through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.展开更多
The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib...The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.展开更多
基金supported by the National Natural Science Foundation of China (50672014)Innovation Research Team Program of the Ministry of Education (IRT0713)
文摘The aim of the present research is to provide a technique for preparing open-cell Al2O3-ZrO2 ceramic foams with uniform cell size.This technique used plant seeds to array templates and centrifugal slip casting to obtain cell struts with high packing density.Aqueous Al2O3-ZrO2 slurries with up to 50 vol.% solid contents were prepared and the rheological characteristic of the slurries was investigated.Consolidation was performed at an acceleration of 2,860 g for 60 min.The effect of the characteristic of plant seeds on the drying behavior of Al2O3-ZrO2 green compact was analyzed.The effects of the solid contents of slurries on segregation phenomena of Al2O3 and ZrO2 particles and green compact uniformity were investigated.The compressive stress-strain curve and deformation behavior of Al2O3-ZrO2 ceramic foams prepared using plant seed template were analyzed.The results showed segregation phenomenon is negligible for highly stable slurry with 50 vol.% solid loading.The prepared cell struts of Al2O3-ZrO2 foams have high green density (61.9% TD), sintered density (99.1% TD) and homogeneous microstructure.When sintered at 1,550 ℃ for 2 h, the cell size of Al2O3-ZrO2 foam is approximately uniform and the diameter is about 1.1 mm.The porosity and compressive strength of sintered products is 66.2% and 5.86 MPa, respectively.
基金financially supported by the Innovation Research Team Program of the Ministry of Education(IRT0713)the Key Laboratory of New Materials in Automobile of Liaoning Province(grant No.201016201)Doctoral Initiating Project of Liaoning Province Foundation for Natural Sciences,China
文摘In present study, BP neural network model was proposed for the prediction of ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The inputs of the BP neural network model were the applied load on the epispastic polystyrene template (F), centrifugal acceleration (v) and sintering temperature (T), while the only output was the ultimate compressive strength ((7). According to the registered BP model, the effects of F, v, T on 0 were analyzed. The predicted results agree with the actual data within reasonable experimental error, indicating that the BP model is practically a very useful tool in property prediction and process parameter design of the Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting.
文摘Effects of interlayer composition on bonding strength and interfacial microstructure of green joined CePO_4-ZrO_2 ceramics were studied. Green bodies of 25%CePO_4/ZrO_2 and ZrO_2 ceramics were joined by using interlayer composed of CePO_4 and ZrO_2 at 1450 ℃ for 120 min without applied pressure.The effects of CePO_4/(CePO_4+ZrO_2) ratio on the bond strength of the joints were investigated. Under the experimental conditions, the grain size of the particles grown in the joint is smaller than those in joined ceramics. The microstructure of the joint is more homogeneous than that of the matrix and without obvious cracks, pores and other defects.
基金financially supported by the Natural Science Foundation of Liaoning Province(No.201102090)the Doctoral Initiating Project of Liaoning Province Foundation for Natural Sciences,China(No.20111068)+1 种基金the High School Development Plan for Distinguished Young Scholars of Liaoning Province Education Committee(No.LJQ2012056)the National High-Tech Research and Development Program of China("863"Program,No.2011AA060102)
文摘BP neural network was used in this study to model the porosity and the compressive strength of a gradient Al2Q-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The influences of the load applied on the epispastic polystyrene template (F), the centrifugal acceleration (V) and sintering temperature (T) on the porosity (P) and compressive strength (a) of the sintered products were studied by using the registered three-layer BP model. The accuracy of the model was verified by comparing the BP model predicted results with the experimental ones. Results show that the model prediction agrees with the experimental data within a reasonable experimental error, indicating that the three-layer BP network based modeling is effective in predicting both the properties and processing parameters in designing the gradient Al203-ZrO2 ceramic foam filter. The prediction results show that the porosity percentage increases and compressive strength decreases with an increase in the applied load on epispastic polystyrene template. As for the influence of sintering temperature, the porosity percentage decreases monotonically with an increase in sintering temperature, yet the compressive strength first increases and then decreases slightly in a given temperature range. Furthermore, the porosity percentage changes little but the compressive strength first increases and then decreases when the centrifugal acceleration increases.
基金Funded by the National Natural Science Foundation of China(No.51401155)the School Foundation(No.XAGDXJJ1012)The Open Fund of Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices(No.ZSKJ201416)
文摘ZrO2-Y2O3 ceramic coating was produced by plasma electrolytic oxidation (PEO) on ZAlSil2Cu3Ni2 alloy. The microstructure and phase composition of the coating were investigated by SEM and XRD.: The results show that adding an appropriate amount of yttrium ion can improve the growing rate of ceramic coating at different oxidation stages and decrease arc voltage. The thickness of ZrO2-Y2O3 coating is 16 μn thicker than that of ZrO2 coating and the maximum oxidation rate improves by 0.6 μm/min. In addition, the arc voltage decreases from 227 to 172 V. It can be seen that the rate of oxidation firstly increases to some extent and then decreases with the content of yttrium ion increasing. The growth rate reaches the maximum while the content of yttrium ion is 0.05 g-L-1The maximum thickness is 90 μm.Compared to ZrO2 coating, the micropores of ZrO2-Y2O3 coating are less and the ceramic layer is repeatedly deposited by ZrO2 and Y2O3 ceramic particles. Meanwhile, the binding force between coating and substrate is better and the coating is uniform and compact. The ceramic layer is mainly composed of c-Y0.15Zr0.85O1.93□0.07, m-ZrO2, α-Al2O3, ,γ-Al2O3 and Y2O3. It is indicated that ZrO2 has beert fully stabilized by yttrium ion through the formation of solid solution.
文摘The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.
文摘The oxidation kinetics of O'-SiAlON-ZrO2 composite ceramics in the temperature range of 1373-1773K has been studied. The oxidation experiments with powder and plates of O'-SiAlON-ZrO2 composite ceramics in air have been carried out. The overall activation energy of oxidation reaction is 263.69 kJ/mol. The products and structures of O'-SiAlON-ZrO2 oxidation layer have been analysed by XRD (X-ray diffraction), SEM (scanning electron microscope) and AFM (atomic force microscope).
基金the financial support from the National Natural Science Foundation of China (No. 21266022, No. 21466022)the National High Technology Research and Development Program 863 (2014AA022002, 2012AA101800-03, 2012AA021205-6, 2012AA021704)+1 种基金the Key Programs of the National Laboratory (No. SKLFZZB-201312)the International Science & Technology Cooperation Program of China (2014DFA61040)
文摘With the help of the ceramic foam research efforts and preparation techniques, the ZrO2 polycrystalline ceramic foam catalyst was synthesized, and its characteristics, including the crystal structure, the phase composition, the acid–base properties, and the microstructure, were analyzed by XRD, SEM, Py-IR, and BET techniques. The performance of the ZrO2 polycrystalline ceramic foam catalyst in a tubular reactor was investigated via biodiesel synthesis using S. wilsoniana oil and methanol. The effects of reaction conditions(i.e., reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil) on transesterification efficiency were investigated, and the reaction conditions were optimized using RSM. The optimum reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil were determined to be 290 ℃, 10 MPa, and 4:1, respectively. Under this condition, the FAME content in the product oil reached 98.38%. The performance of the ZrO2 polycrystalline ceramic foam catalyst synthesized in this work for biodiesel synthesis from S. wilsoniana oil with a moisture content of 7.1% and an acid value of 130.697 mg KOH/g was examined, and the FAME content in the product oil was found to be 93% and 97.67%, respectively. The FAME content in the product oil exceeded 97% after five consecutive cycles(12 h per cycle of use) of the catalyst. The proposed catalyst represents a new type of solid catalyst with excellent acid resistance, water resistance, esterification efficiency, and catalytic stability.
文摘Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.
基金Supported by Natural Science Foundation of Tianjin (No.06YFJMJC01000) the High Technique Research and Development Pro-gram of China (No.2001AA325110).
文摘The microwave dielectric properties of ZrO2-SnO2-TiO2 (ZST) system ceramics were studied as a function of the amount of Sb2O5 dopant. With the addition of 0-0.5% Sb2O5(molar ratio), the substitution of Ti4^+ ions with Sb^5+ ions decreased the sintering temperature and increased the quality factor Q due to the reduction of oxygen vacancies, When the amount of Sb^5+ increased further (above 0.5%), Q was decreased by increasing the electron concentration. When the system doped with 0.5% Sb2O5 was sintered at 1 150℃ for 6 h, the relative dielectric constant ε, Qf0, and the temperature coefficient of resonant frequency (TCF) were 38.46, 44 500 GHz, 20.0×10^-6/℃, respectively, at 6 GHz,
文摘The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of ZrO_(2)for TiO_(2)is not conductive to precipitate𝛽β-quartz solid solution phase,but can improve the transparency and flexural strength of glass-ceramics.And the glass-ceramic with the highest visible light transmittance(87%)and flexural strength(231.80 MPa)exhibits an ultra-low thermal expansion of-0.028×10^(-7)K^(-1)in the region of 30-700℃.
基金National Key R&D Program of China(2022YFB3707700)Shanghai Science and Technology Innovation Action Plan(21511104800)+3 种基金National Natural Science Foundation of China(52172111)National Science and Technology Major Project(2017-IV-0005-0042)Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-2-2)Science Center for Gas Turbine Project(P2022-B-IV-001-001)。
文摘ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.
基金This study is supported by the National Key Research and Development Program of China(No.2022YFB2807405)the Qinchuangyuan Citing High-level Innovation and Entrepreneurship Talent Projects(No.QCYRCXM-2022-40)+2 种基金the National Natural Science Foundation of China(Nos.U2341263 and 62371366)Open project of Yunnan Precious Metals Laboratory Co.,Ltd(No.YPML-2023050246)Innovation Capability Support Program of Shaanxi,China(Nos.2023-CX-PT-30 and 2022TD-28).
文摘A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this study.The good low-firing effects are presented due to the high matching relevance between Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass and MgTa_(2)O_(6)ceramics.The pure tri-rutile MgTa_(2)O_(6)structure remains unchanged,and high sintering compactness can also be achieved at 1150℃.We found that the Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass not only greatly improves the low-temperature sintering characteristics of MgTa_(2)O_(6)ceramics but also maintains a high(quality factor(Q)×resonance frequency(f))value while still improving the temperature stability.Typically,great microwave dielectric characteristics when added with 2wt%Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass can be achieved at 1150℃:dielectric constant,ε_(r)=26.1;Q×f=34267 GHz;temperature coefficient of resonance frequency,τ_(f)=-8.7×10^(-6)/℃.
基金National Key R&D Program of China(2023YFB3507400)。
文摘Er^(3+),Na^(+)co-doped CaF_(2) transparent ceramics with Er^(3+)dopant concentration of 3% and Na^(+) of 0%,0.5%,1.0%,1.5% and 2.0% were fabricated by the vacuum hot pressing method with 16 mm in diameter and 3 mm in thickness.The average grain size of the obtained Er,Na∶CaF_(2) powders varied from 28 nm to 36 nm with the shape of sphere.The effects of Na^(+) doping on the transmittance,microstructure and spectral properties of Er^(3+)∶CaF_(2) transparent ceramics were investigated.The transmittance of all the obtained ceramic samples is above 84%in the wavelength of 1000 nm.The results show that after introducing Na^(+)into Er^(3+)∶CaF_(2) transparent ceramics,charge-neutralized Er^(3+)-Na^(+) structure formed which prevent Er^(3+) from clustering.The emission spectra of Er^(3+) in CaF_(2) transparent ceramics at around 1.5 and 2.7μm could be modulated by adjusting the concentration of Na^(+) and the near-infrared fluorescence lifetime at around 1.5μm increase with the increasing of Na^(+) concentration,reaching a maximum of 56.75 ms.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172179,U2341244,and 11772160)。
文摘To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different thickness configurations.The damage and failure modes of hard projectiles and ceramic-fiber composite targets were analyzed.The recovered projectiles and ceramic fragments were sieved and weighed at multiple stages,revealing a positive correlation between the degree of fragmentation of the projectiles and ceramics and the overall ballistic resistance of the composite targets.Numerical simulations were performed using the LS-DYNA finite element software,and the simulation results showed high consistency with the experimental results,confirming the validity of the material parameters.The results indicate that the projectile heads primarily exhibited crushing and abrasive fragmentation.Larger projectile fragments mainly resulted from tensile and shear stress-induced failure.The failure modes of the composite targets included the formation of ceramic cones and radial cracks under high-velocity impacts.The UHMWPE laminated plates exhibited interlayer separation caused by tensile waves,permanent plastic deformation of the rear surface bulging,and perforation failure primarily due to shear forces.Through extended numerical simulations,while maintaining the same areal density and configuration of9 mm Al_(2)O_(3) ceramic+12 mm UHMWPE laminated composite armor,the thickness configurations of the Al_(2)O_(3) ceramic and UHMWPE laminated backplates were varied,and various thicknesses of UHMWPE laminates were simulated as the cover layer for the ceramic panels.The simulation results indicated that the composite armor configuration of 10 mm Al_(2)O_(3) ceramic+8 mm UHMWPE composite armor increased energy absorption by13.48%.When altering the cover layer thickness,a 4 mm UHMWPE+9 mm Al_(2)O_(3)+8 mm UHMWPE composite armor demonstrated a 27.11%improvement in energy absorption,showing a relatively significant enhancement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52272116 and 12002400)the Natural Science Foundation of Shandong Province (Grant No.ZR2021ME096)the Youth Innovation Team Project of Shandong Provincial Education Department (Grant No.2019KJJ012)。
文摘Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients.The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics,which makes it not easy to extend the sample data by additional experimental or theoretical calculations.In this paper,a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components.In contrast to all-data-driven model,physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties.Based on the model outputs,the positions of morphotropic phase boundary(MPB)with different Sm doping amounts are explored.We also find the components with the best piezoelectric property and comprehensive performance.Moreover,we set up a database according to the obtained results,through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.
文摘The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.