C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is t...C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels.展开更多
Solar Photovoltaic is a very promising solution that can greatly contribute in solving the increasing global energy demand. In both rural and urban areas, photovoltaic modules are in some instances installed close to ...Solar Photovoltaic is a very promising solution that can greatly contribute in solving the increasing global energy demand. In both rural and urban areas, photovoltaic modules are in some instances installed close to telecommunication antennas or voltage transformers which generate important magnetic fields in their vicinity. The question is whether or not these magnetic fields affect the performances of the photovoltaic installations. This article presents a modelling study of external magnetic field effect on the electrical parameters of a photovoltaic module. The photocurrent, the photovoltage, the electric power, the series and the shunt resistances of the photovoltaic module, made up of ideal cells, are deduced from those of a silicon solar cell. Then, the I-V and P-V curves are plotted and the theoretical values of the electrical parameters of the photovoltaic module are deduced. The series and shunt resistances of the photovoltaic module are calculated using well known equations and the previous electrical parameters. The results show the negative effect of magnetic field on the performance of a solar photovoltaic module.展开更多
A novel roof tile thermoelectric generator(RT-TEG)was used to harvest electrical energy from a solar heat source.The RT-TEG was fabricated and simulated by flat and curved thermoelectric modules consisting of p-n junc...A novel roof tile thermoelectric generator(RT-TEG)was used to harvest electrical energy from a solar heat source.The RT-TEG was fabricated and simulated by flat and curved thermoelectric modules consisting of p-n junctions of p-Sb_(2)Te_(3) and n-Bi_(2)Te_(3),with an Al_(2)O_(3) substrate at the top and bottom for heat absorption and heat rejection.The RT-TEG was installed in a roof tile to act as a generator.The electrical voltage and power values of the curved thermoelectric modules were higher than those of the flat thermoelectric module by 0.44 V and 80 mW,at a temperature difference(ΔT)of 100 K.In field tests,the RT-TEG produced a maximum electrical voltage of 33.70 mV and an electrical power of 46.24μW atΔT~7 K under a load resistance of 1Ωunder good sunshine at 13.00 hours.The energy conversion efficiency of RT-TEG was found to be 2.24×10^(−4).展开更多
The cascadability of uniform fibre Bragg grating for 40 Gbit/s return to zero on-off keying to non-return to zero on-off keying format conversion has been shown using OptSim simulation program. The main idea of this a...The cascadability of uniform fibre Bragg grating for 40 Gbit/s return to zero on-off keying to non-return to zero on-off keying format conversion has been shown using OptSim simulation program. The main idea of this approach is use of specially designed uniform fibre Bragg grating with appropriate transfer function for shaping of 40 Gbit/s return to zero on-off keying optical spectrum. Error free performance is achieved after four cascades of uniform fibre Bragg grating with different reflectivity values.展开更多
In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence i...In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence it is necessary to design a system that regulates output parameters, such as voltage and frequency, and thereby provides a constant voltage and frequency output from the wind energy conversion system. Matrix converter is used in the proposed solution as the main power conditioner as a more efficient alternative when compared to traditional back-back converter structure. To control the output voltage, a vector modulation based refined control structure is used. A power tracker is included to maximize the mechanical output power of the turbine. Over current protection and clamp circuit input protection have been introduced to protect the system from over current. It reduces the spikes generated at the output of the converter. The designed system is capable of supplying an output voltage of constant frequency and amplitude within the expected ranges of input during the operation. The matrix converter control using direct modulation method, modified Venturini modulation method and vector modulation method was simulated, the results were compared and it was inferred that vector modulation method was superior to the other two methods. With the proposed technique, voltage transfer ratio and harmonic profile have been improved compared to the other two modulation techniques. The behaviour of the system is corroborated by MATLAB Simulink, and hardware is realized using an FPGA controller. Experimental results are found to be matching with the simulation results.展开更多
A high-resolution,200kHz signal bandwidth,third-order single-loop single-bit ε△ modulator used in low-IF GSM receivers is presented. The modulator is implemented with fully differential switched capacitor circuits i...A high-resolution,200kHz signal bandwidth,third-order single-loop single-bit ε△ modulator used in low-IF GSM receivers is presented. The modulator is implemented with fully differential switched capacitor circuits in standard 0. 6μm 2P2M CMOS technology. The modulator uses two balanced reference voltages of ±1V,and is driven by a single 26MHz clock signal. The measurement results show that,with an oversampling ratio of 64, the modulator achieves an 80.6dB dynamic range,a 71.8dB peak SNDR,and a 73.9dB peak SNR in the signal bandwidth of 200kHz. The modulator dissipates 15mW static power from a single 5V supply.展开更多
文摘C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels.
文摘Solar Photovoltaic is a very promising solution that can greatly contribute in solving the increasing global energy demand. In both rural and urban areas, photovoltaic modules are in some instances installed close to telecommunication antennas or voltage transformers which generate important magnetic fields in their vicinity. The question is whether or not these magnetic fields affect the performances of the photovoltaic installations. This article presents a modelling study of external magnetic field effect on the electrical parameters of a photovoltaic module. The photocurrent, the photovoltage, the electric power, the series and the shunt resistances of the photovoltaic module, made up of ideal cells, are deduced from those of a silicon solar cell. Then, the I-V and P-V curves are plotted and the theoretical values of the electrical parameters of the photovoltaic module are deduced. The series and shunt resistances of the photovoltaic module are calculated using well known equations and the previous electrical parameters. The results show the negative effect of magnetic field on the performance of a solar photovoltaic module.
基金supported by the Thailand Research Fund(TRF)Research Career Development Grant:(RSA6180070).
文摘A novel roof tile thermoelectric generator(RT-TEG)was used to harvest electrical energy from a solar heat source.The RT-TEG was fabricated and simulated by flat and curved thermoelectric modules consisting of p-n junctions of p-Sb_(2)Te_(3) and n-Bi_(2)Te_(3),with an Al_(2)O_(3) substrate at the top and bottom for heat absorption and heat rejection.The RT-TEG was installed in a roof tile to act as a generator.The electrical voltage and power values of the curved thermoelectric modules were higher than those of the flat thermoelectric module by 0.44 V and 80 mW,at a temperature difference(ΔT)of 100 K.In field tests,the RT-TEG produced a maximum electrical voltage of 33.70 mV and an electrical power of 46.24μW atΔT~7 K under a load resistance of 1Ωunder good sunshine at 13.00 hours.The energy conversion efficiency of RT-TEG was found to be 2.24×10^(−4).
文摘The cascadability of uniform fibre Bragg grating for 40 Gbit/s return to zero on-off keying to non-return to zero on-off keying format conversion has been shown using OptSim simulation program. The main idea of this approach is use of specially designed uniform fibre Bragg grating with appropriate transfer function for shaping of 40 Gbit/s return to zero on-off keying optical spectrum. Error free performance is achieved after four cascades of uniform fibre Bragg grating with different reflectivity values.
文摘In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence it is necessary to design a system that regulates output parameters, such as voltage and frequency, and thereby provides a constant voltage and frequency output from the wind energy conversion system. Matrix converter is used in the proposed solution as the main power conditioner as a more efficient alternative when compared to traditional back-back converter structure. To control the output voltage, a vector modulation based refined control structure is used. A power tracker is included to maximize the mechanical output power of the turbine. Over current protection and clamp circuit input protection have been introduced to protect the system from over current. It reduces the spikes generated at the output of the converter. The designed system is capable of supplying an output voltage of constant frequency and amplitude within the expected ranges of input during the operation. The matrix converter control using direct modulation method, modified Venturini modulation method and vector modulation method was simulated, the results were compared and it was inferred that vector modulation method was superior to the other two methods. With the proposed technique, voltage transfer ratio and harmonic profile have been improved compared to the other two modulation techniques. The behaviour of the system is corroborated by MATLAB Simulink, and hardware is realized using an FPGA controller. Experimental results are found to be matching with the simulation results.
文摘A high-resolution,200kHz signal bandwidth,third-order single-loop single-bit ε△ modulator used in low-IF GSM receivers is presented. The modulator is implemented with fully differential switched capacitor circuits in standard 0. 6μm 2P2M CMOS technology. The modulator uses two balanced reference voltages of ±1V,and is driven by a single 26MHz clock signal. The measurement results show that,with an oversampling ratio of 64, the modulator achieves an 80.6dB dynamic range,a 71.8dB peak SNDR,and a 73.9dB peak SNR in the signal bandwidth of 200kHz. The modulator dissipates 15mW static power from a single 5V supply.