BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale c...BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale cannot be fully understood due to lack of information.AIM To identify key factors that may explain the variability in case lethality across countries.METHODS We identified 21 Potential risk factors for coronavirus disease 2019(COVID-19)case fatality rate for all the countries with available data.We examined univariate relationships of each variable with case fatality rate(CFR),and all independent variables to identify candidate variables for our final multiple model.Multiple regression analysis technique was used to assess the strength of relationship.RESULTS The mean of COVID-19 mortality was 1.52±1.72%.There was a statistically significant inverse correlation between health expenditure,and number of computed tomography scanners per 1 million with CFR,and significant direct correlation was found between literacy,and air pollution with CFR.This final model can predict approximately 97%of the changes in CFR.CONCLUSION The current study recommends some new predictors explaining affect mortality rate.Thus,it could help decision-makers develop health policies to fight COVID-19.展开更多
The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems.Here,we develop a new analytical approach based on the bifur...The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems.Here,we develop a new analytical approach based on the bifurcation analysis to explore the mathematical solution structure of phase field models.Revealing such solution structures not only is of great mathematical interest but also may provide guidance to experimentally or computationally uncover new morphological evolution phenomena in materials undergoing electronic and structural phase transitions.To elucidate the idea,we apply this analytical approach to three representative phase field equations:the Allen-Cahn equation,the Cahn-Hilliard equation,and the Allen-Cahn-Ohta-Kawasaki system.The solution structures of these three phase field equations are also verified numerically by the homotopy continuation method.展开更多
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve...Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.展开更多
This paper considers the rational expectations model with multiplicative noise and input delay,where the system dynamics rely on the conditional expectations of future states.The main contribution is to obtain a suffi...This paper considers the rational expectations model with multiplicative noise and input delay,where the system dynamics rely on the conditional expectations of future states.The main contribution is to obtain a sufficient condition for the exact controllability of the rational expectations model.In particular,we derive a sufficient Gramian matrix condition and a rank condition for the delay-free case.The key is the solvability of the backward stochastic difference equations with input delay which is derived from the forward and backward stochastic system.展开更多
As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem ...As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem service value(ESV).Based on the patterns of land use change and the ESV change in Su-Xi-Chang metropolitan area from 2000 to 2020,we set up four scenarios:natural development scenario,urban development scenario,arable land protection scenario and ecological protection scenario,and simulated the impact of land use changes on the ESV in these scenarios.The results showed that:1) the area of built-up land in the Su-XiChang metropolitan area increased significantly from 2000 to 2020,and the area of other types of land decreased.Arable land underwent the highest transfer-out area,and was primarily converted into built-up land.The total ESV of Su-Xi-Chang metropolitan area increased initially then declined from 2000–2020,and the value of almost all individual ecosystem services decreased.2) Population density,GDP per area,night lighting intensity,and road network density can negatively impact the ESV.3) The total ESV loss under the natural development and urban development scenarios was high,and the expansion of the built-up land and the drastic shrinkage of the arable land contributed to the ESV decline under both scenarios.The total ESV under arable land protection and ecological protection scenarios increases,and therefore these scenarios are suitable for future land use optimization in Su-Xi-Chang.This study could provide a certain reference for land use planning and allocation,and offer guidance for the rational allocation of land resources.展开更多
The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical...The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.展开更多
Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop cont...Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.展开更多
Stop frequency models, as one of the elements of activity based models, represent an important part of travel behavior. Unobserved heterogeneity across the travelers should be taken into consideration to prevent biase...Stop frequency models, as one of the elements of activity based models, represent an important part of travel behavior. Unobserved heterogeneity across the travelers should be taken into consideration to prevent biasedness and inconsistency in the estimated parameters in the stop frequency models. Additionally, previous studies on the stop frequency have mostly been done in larger metropolitan areas and less attention has been paid to the areas with less population. This study addresses these gaps by using 2012 travel data from a medium sized U.S. urban area using the work tour for the case study. Stop in the work tour were classified into three groups of outbound leg, work based subtour, and inbound leg of the commutes. Latent Class Poisson Regression Models were used to analyze the data. The results indicate the presence of heterogeneity across the commuters. Using latent class models significantly improves the predictive power of the models compared to regular one class Poisson regression models. In contrast to one class Poisson models, gender becomes insignificant in predicting the number of tours when unobserved heterogeneity is accounted for. The commuters are associated with increased stops on their work based subtour when the employment density of service-related occupations increases in their work zone, but employment density of retail employment does not significantly contribute to the stop making likelihood of the commuters. Additionally, an increase in the number of work tours was associated with fewer stops on the inbound leg of the commute. The results of this study suggest the consideration of unobserved heterogeneity in the stop frequency models and help transportation agencies and policy makers make better inferences from such models.展开更多
Four varieties of each rapeseed and buckwheat were planted in different sowing periods to explore a variety of planting patterns.A theoretical foundation was provided for the innovative application of cold region prod...Four varieties of each rapeseed and buckwheat were planted in different sowing periods to explore a variety of planting patterns.A theoretical foundation was provided for the innovative application of cold region productive plant landscapes.The analytic hierarchy process was employed to develop a model for the evaluation of multiple cropping systems.A comprehensive evaluation was conducted to study 10 indicators in plant type,flower color,flowering period,flower volume,branch coverage,plot average yield,number of grains per plant,yield per plant,thousand-grain quality and ecological adaptability in four different varieties of each rapeseed and buckwheat.The results indicated that flower color,ecological adaptability,plot average yield and flower volume were the most important indicators for the value of productive plant landscapes in cold regions.Concerning the sowing period,the optimal combination of varieties and planting times were March 31 for Qingza No.5(rapeseed)and July 18 for Xinong T1211(buckwheat).展开更多
Since the epidemic,online classes have been a common practice,and learning motivation plays a key role in the efficiency of the online English,which should not be underestimated in improving online foreign language te...Since the epidemic,online classes have been a common practice,and learning motivation plays a key role in the efficiency of the online English,which should not be underestimated in improving online foreign language teaching.This paper discusses how to effectively apply ARCS motivation model in online English teaching design with examples of college English textbooks,so as to motivate students and improve students’online classroom efficiency by improving their learning motivation.展开更多
In the future connected vehicle environment,the information of multiple vehicles ahead can be readily collected in real-time,such as the velocity or headway,which provides more opportunities for information exchange a...In the future connected vehicle environment,the information of multiple vehicles ahead can be readily collected in real-time,such as the velocity or headway,which provides more opportunities for information exchange and cooperative control.Meanwhile,gyroidal roads are one of the fundamental road patterns prevalent in mountainous areas.To effectively control the system,it is therefore significant to explore the evolution mechanism of traffic flow on gyroidal roads under a connected vehicle environment.In this paper,we present a new continuum model with the average velocity of multiple vehicles ahead on gyroidal roads.The stability criterion and KdV-Burger equation are deduced via linear and nonlinear stability analysis,respectively.Solving the above KdV-Burger equation yields the density wave solution,which explores the formation and propagation property of traffic jams near the neutral stability curve.Simulation examples verify that the model can reproduce complex phenomena,such as shock waves and rarefaction waves.The analysis of the local cluster effect shows that the number of vehicles ahead and the radius information,and the slope information of gyroidal roads can exert a great influence on traffic jams.The effect of the first and second terms are positive,while the last term is negative.展开更多
We use the approach of “optimal” switching to design the adaptive control because the design among multiple models is intuitively more practically feasible than the traditional adaptive control in improving the perf...We use the approach of “optimal” switching to design the adaptive control because the design among multiple models is intuitively more practically feasible than the traditional adaptive control in improving the performances. We prove that for a typical class of nonlinear systems disturbed by random noise, the multiple model adaptive switching control based on WLS (Weighted Least Squares) or projected-LS (Least Squares) is stable and convergent.展开更多
The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and st...The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.展开更多
In order to design linear controller for nonlinear systems,a simple but efficient method of modeling a nonlinear system was proposed by means of multiple linearized models at different operating points in the entire r...In order to design linear controller for nonlinear systems,a simple but efficient method of modeling a nonlinear system was proposed by means of multiple linearized models at different operating points in the entire range of the expected changes of the operating points.The original nonlinear system was described by linear combination of these multiple linearized models,with the linear combination parameters being identified on line based on least squares method.Model Predictive Control,an optimization based technique,was used to design the linear controller.A sufficient condition for ensuring the existence of a linear controller for the original nonlinear system was also given.Good performance indicated by two simulated examples confirms the usefulness of the proposed method.展开更多
This paper deals with control system design and implementation problems encountered in multiple robot systems. The methodology developed is depicted by a set of coordination mechanisms using hierarchical net structure...This paper deals with control system design and implementation problems encountered in multiple robot systems. The methodology developed is depicted by a set of coordination mechanisms using hierarchical net structures and their accompanying rules. With the net models, the hierarchical and distributed control system is designed for an assembly task. Synchronization commands allow coordination of the movements of the robots. The net models make concurrency of the movements of the robots transparent to users. The net based machine controller executes robot motion control through the communication with the external robot controller using the command/response concept. Sensory signals indicating the change of state of robots are used to trigger or initiate tasks. Simultaneous movement of the robots is obtained by creating different background threads running in parallel under Windows OS. The multilevel hierarchical control system can be consistently constructed using net models.展开更多
To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) ,...To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) , the paper presents an adaptive filter algorithm that combines interacting multiple model (IMM) and non linear Kalman filter. The algorithm describes the motion mode of vehicle by using three state spacemode]s. At first, the parallel filter of each model is realized by using multiple nonlinear filters. Then the weight integration of filtering result is carried out by using the model matching likelihood function so as to get the system positioning information. The method has advantages of nonlinear system filter and overcomes disadvantages of single model of filtering algorithm that has poor effects on positioning the maneuvering target. At last, the paper uses IMM and EKF methods to simulate the global positioning system (OPS)/inertial navigation system (INS)/dead reckoning (DR) integrated positioning system, respectively. The results indicate that the IMM algorithm is obviously superior to EKF filter used in the integrated positioning system at present. Moreover, it can greatly enhance the stability and positioning precision of integrated positioning system.展开更多
Precise quantifi cation of climate-growth relationships can make a major contribution to scientifi c forest management.However,whether diff erences in the response of growth to climate at diff erent altitudes remains ...Precise quantifi cation of climate-growth relationships can make a major contribution to scientifi c forest management.However,whether diff erences in the response of growth to climate at diff erent altitudes remains unclear.To answer this,264 trees of Larix kaempferi from 88 plots,representing diff erent altitudinal ranges(1000-2100 m)and tree classes were sampled and used to develop tree-ring chronologies.Tree-ring growth(TRG)was either positively(dominant)or negatively(intermediate and suppressed)correlated with climate in diff erent tree classes at diff erent altitudes.TRG was strongly correlated with growing season at low altitudes,but was less sensitive to climate at middle altitudes.It was mainly limited by precipitation and was highly sensitive to climate at low altitudes.Climate-growth relationships at high altitudes were opposite compared to those at low altitudes.TRG of dominant trees was more sensitive to climate change compared to intermediate and suppressed trees.Climate factors(annual temperatures;moisture,the number of frost-free days)had diff erent eff ects on tree-ring growth of diff erent tree classes along altitudinal gradients.It was concluded that the increase in summer temperatures decreased water availability,resulting in a signifi cant decline in growth rates after 2005 at lower altitudes.L.kaempferi is suitable for planting in middle altitudes and dominant trees were the best sampling choice for accurately assessing climate-growth relationships.展开更多
In order to reduce average arterial vehicle delay, a novel distributed and coordinated traffic control algorithm is developed using the multiple agent system and the reinforce learning (RL). The RL is used to minimi...In order to reduce average arterial vehicle delay, a novel distributed and coordinated traffic control algorithm is developed using the multiple agent system and the reinforce learning (RL). The RL is used to minimize average delay of arterial vehicles by training the interaction ability between agents and exterior environments. The Robertson platoon dispersion model is embedded in the RL algorithm to precisely predict platoon movements on arteries and then the reward function is developed based on the dispersion model and delay equations cited by HCM2000. The performance of the algorithm is evaluated in a Matlab environment and comparisons between the algorithm and the conventional coordination algorithm are conducted in three different traffic load scenarios. Results show that the proposed algorithm outperforms the conventional algorithm in all the scenarios. Moreover, with the increase in saturation degree, the performance is improved more significantly. The results verify the feasibility and efficiency of the established algorithm.展开更多
The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can repr...The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude.展开更多
文摘BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale cannot be fully understood due to lack of information.AIM To identify key factors that may explain the variability in case lethality across countries.METHODS We identified 21 Potential risk factors for coronavirus disease 2019(COVID-19)case fatality rate for all the countries with available data.We examined univariate relationships of each variable with case fatality rate(CFR),and all independent variables to identify candidate variables for our final multiple model.Multiple regression analysis technique was used to assess the strength of relationship.RESULTS The mean of COVID-19 mortality was 1.52±1.72%.There was a statistically significant inverse correlation between health expenditure,and number of computed tomography scanners per 1 million with CFR,and significant direct correlation was found between literacy,and air pollution with CFR.This final model can predict approximately 97%of the changes in CFR.CONCLUSION The current study recommends some new predictors explaining affect mortality rate.Thus,it could help decision-makers develop health policies to fight COVID-19.
基金supported as part of the Computational Materials Sciences Program funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences,under Award No.DE-SC0020145Y.Z.would like to acknowledge support for his effort by the Simons Foundation through Grant No.357963 and NSF grant DMS-2142500.
文摘The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems.Here,we develop a new analytical approach based on the bifurcation analysis to explore the mathematical solution structure of phase field models.Revealing such solution structures not only is of great mathematical interest but also may provide guidance to experimentally or computationally uncover new morphological evolution phenomena in materials undergoing electronic and structural phase transitions.To elucidate the idea,we apply this analytical approach to three representative phase field equations:the Allen-Cahn equation,the Cahn-Hilliard equation,and the Allen-Cahn-Ohta-Kawasaki system.The solution structures of these three phase field equations are also verified numerically by the homotopy continuation method.
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
基金supported by the Science and Technology Project of State Grid Shanxi Electric Power Research Institute:Research on Data-Driven New Power System Operation Simulation and Multi Agent Control Strategy(52053022000F).
文摘Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.
基金supported by the National Natural Science Foundation of China under Grants 61821004,62250056,62350710214,U23A20325,62350055the Natural Science Foundation of Shandong Province,China(ZR2021ZD14,ZR2021JQ24)+2 种基金High-level Talent Team Project of Qingdao West Coast New Area,China(RCTD-JC-2019-05)Key Research and Development Program of Shandong Province,China(2020CXGC01208)Science and Technology Project of Qingdao West Coast New Area,China(2019-32,2020-20,2020-1-4).
文摘This paper considers the rational expectations model with multiplicative noise and input delay,where the system dynamics rely on the conditional expectations of future states.The main contribution is to obtain a sufficient condition for the exact controllability of the rational expectations model.In particular,we derive a sufficient Gramian matrix condition and a rank condition for the delay-free case.The key is the solvability of the backward stochastic difference equations with input delay which is derived from the forward and backward stochastic system.
基金Under the auspices of Humanities and Social Sciences Foundation of Soochow University(No.22XM2008)National Social Science Foundation of China(No.23BGL168)。
文摘As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem service value(ESV).Based on the patterns of land use change and the ESV change in Su-Xi-Chang metropolitan area from 2000 to 2020,we set up four scenarios:natural development scenario,urban development scenario,arable land protection scenario and ecological protection scenario,and simulated the impact of land use changes on the ESV in these scenarios.The results showed that:1) the area of built-up land in the Su-XiChang metropolitan area increased significantly from 2000 to 2020,and the area of other types of land decreased.Arable land underwent the highest transfer-out area,and was primarily converted into built-up land.The total ESV of Su-Xi-Chang metropolitan area increased initially then declined from 2000–2020,and the value of almost all individual ecosystem services decreased.2) Population density,GDP per area,night lighting intensity,and road network density can negatively impact the ESV.3) The total ESV loss under the natural development and urban development scenarios was high,and the expansion of the built-up land and the drastic shrinkage of the arable land contributed to the ESV decline under both scenarios.The total ESV under arable land protection and ecological protection scenarios increases,and therefore these scenarios are suitable for future land use optimization in Su-Xi-Chang.This study could provide a certain reference for land use planning and allocation,and offer guidance for the rational allocation of land resources.
基金Supported by the National Natural Science Foundation of China (60704002)
文摘The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.
基金supported by the Major Science and Technology Projects of Gansu Province(Grant No.20ZD7GF011)Gansu Province Higher Education Industry Support Plan Project:Research on the Collaborative Operation of Solar Thermal Storage+Wind-Solar Hybrid Power Generation--Based on“Integrated Energy Demonstration of Wind-Solar Energy Storage in Gansu Province”(Project No.2022CYZC-34).
文摘Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.
文摘Stop frequency models, as one of the elements of activity based models, represent an important part of travel behavior. Unobserved heterogeneity across the travelers should be taken into consideration to prevent biasedness and inconsistency in the estimated parameters in the stop frequency models. Additionally, previous studies on the stop frequency have mostly been done in larger metropolitan areas and less attention has been paid to the areas with less population. This study addresses these gaps by using 2012 travel data from a medium sized U.S. urban area using the work tour for the case study. Stop in the work tour were classified into three groups of outbound leg, work based subtour, and inbound leg of the commutes. Latent Class Poisson Regression Models were used to analyze the data. The results indicate the presence of heterogeneity across the commuters. Using latent class models significantly improves the predictive power of the models compared to regular one class Poisson regression models. In contrast to one class Poisson models, gender becomes insignificant in predicting the number of tours when unobserved heterogeneity is accounted for. The commuters are associated with increased stops on their work based subtour when the employment density of service-related occupations increases in their work zone, but employment density of retail employment does not significantly contribute to the stop making likelihood of the commuters. Additionally, an increase in the number of work tours was associated with fewer stops on the inbound leg of the commute. The results of this study suggest the consideration of unobserved heterogeneity in the stop frequency models and help transportation agencies and policy makers make better inferences from such models.
基金Supported by the National Natural Science Foundation of China(31770437)。
文摘Four varieties of each rapeseed and buckwheat were planted in different sowing periods to explore a variety of planting patterns.A theoretical foundation was provided for the innovative application of cold region productive plant landscapes.The analytic hierarchy process was employed to develop a model for the evaluation of multiple cropping systems.A comprehensive evaluation was conducted to study 10 indicators in plant type,flower color,flowering period,flower volume,branch coverage,plot average yield,number of grains per plant,yield per plant,thousand-grain quality and ecological adaptability in four different varieties of each rapeseed and buckwheat.The results indicated that flower color,ecological adaptability,plot average yield and flower volume were the most important indicators for the value of productive plant landscapes in cold regions.Concerning the sowing period,the optimal combination of varieties and planting times were March 31 for Qingza No.5(rapeseed)and July 18 for Xinong T1211(buckwheat).
文摘Since the epidemic,online classes have been a common practice,and learning motivation plays a key role in the efficiency of the online English,which should not be underestimated in improving online foreign language teaching.This paper discusses how to effectively apply ARCS motivation model in online English teaching design with examples of college English textbooks,so as to motivate students and improve students’online classroom efficiency by improving their learning motivation.
基金supported by Guangdong Basic and Applied Research Foundation(Project No.2022A1515010948,2019A1515111200,2019A1515110837,2023A1515011696)the National Science Foundation of China(Project No.72071079,52272310).
文摘In the future connected vehicle environment,the information of multiple vehicles ahead can be readily collected in real-time,such as the velocity or headway,which provides more opportunities for information exchange and cooperative control.Meanwhile,gyroidal roads are one of the fundamental road patterns prevalent in mountainous areas.To effectively control the system,it is therefore significant to explore the evolution mechanism of traffic flow on gyroidal roads under a connected vehicle environment.In this paper,we present a new continuum model with the average velocity of multiple vehicles ahead on gyroidal roads.The stability criterion and KdV-Burger equation are deduced via linear and nonlinear stability analysis,respectively.Solving the above KdV-Burger equation yields the density wave solution,which explores the formation and propagation property of traffic jams near the neutral stability curve.Simulation examples verify that the model can reproduce complex phenomena,such as shock waves and rarefaction waves.The analysis of the local cluster effect shows that the number of vehicles ahead and the radius information,and the slope information of gyroidal roads can exert a great influence on traffic jams.The effect of the first and second terms are positive,while the last term is negative.
基金This work was supported by the National Natural Science Foundation of China.
文摘We use the approach of “optimal” switching to design the adaptive control because the design among multiple models is intuitively more practically feasible than the traditional adaptive control in improving the performances. We prove that for a typical class of nonlinear systems disturbed by random noise, the multiple model adaptive switching control based on WLS (Weighted Least Squares) or projected-LS (Least Squares) is stable and convergent.
基金Projects(40974077,41164004)supported by the National Natural Science Foundation of ChinaProject(2007AA06Z134)supported by the National High Technology Research and Development Program of China+2 种基金Projects(2011GXNSFA018003,0832263)supported by the Natural Science Foundation of Guangxi Province,ChinaProject supported by Program for Excellent Talents in Guangxi Higher Education Institution,ChinaProject supported by the Foundation of Guilin University of Technology,China
文摘The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.
文摘In order to design linear controller for nonlinear systems,a simple but efficient method of modeling a nonlinear system was proposed by means of multiple linearized models at different operating points in the entire range of the expected changes of the operating points.The original nonlinear system was described by linear combination of these multiple linearized models,with the linear combination parameters being identified on line based on least squares method.Model Predictive Control,an optimization based technique,was used to design the linear controller.A sufficient condition for ensuring the existence of a linear controller for the original nonlinear system was also given.Good performance indicated by two simulated examples confirms the usefulness of the proposed method.
文摘This paper deals with control system design and implementation problems encountered in multiple robot systems. The methodology developed is depicted by a set of coordination mechanisms using hierarchical net structures and their accompanying rules. With the net models, the hierarchical and distributed control system is designed for an assembly task. Synchronization commands allow coordination of the movements of the robots. The net models make concurrency of the movements of the robots transparent to users. The net based machine controller executes robot motion control through the communication with the external robot controller using the command/response concept. Sensory signals indicating the change of state of robots are used to trigger or initiate tasks. Simultaneous movement of the robots is obtained by creating different background threads running in parallel under Windows OS. The multilevel hierarchical control system can be consistently constructed using net models.
基金National Natural Science Foundation of China(No.61663020)Project of Education Department of Gansu Province(No.2016B-036)
文摘To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) , the paper presents an adaptive filter algorithm that combines interacting multiple model (IMM) and non linear Kalman filter. The algorithm describes the motion mode of vehicle by using three state spacemode]s. At first, the parallel filter of each model is realized by using multiple nonlinear filters. Then the weight integration of filtering result is carried out by using the model matching likelihood function so as to get the system positioning information. The method has advantages of nonlinear system filter and overcomes disadvantages of single model of filtering algorithm that has poor effects on positioning the maneuvering target. At last, the paper uses IMM and EKF methods to simulate the global positioning system (OPS)/inertial navigation system (INS)/dead reckoning (DR) integrated positioning system, respectively. The results indicate that the IMM algorithm is obviously superior to EKF filter used in the integrated positioning system at present. Moreover, it can greatly enhance the stability and positioning precision of integrated positioning system.
基金funded by Fundamental Research Funds of CAF (CAFYBB2022ZA00103)National Natural Science Foundation of China (General Program)(31971652)+1 种基金National Natural Science Foundation of China (32001308)Fundamental Research Funds of CAF (CAFYBB2022ZC001)
文摘Precise quantifi cation of climate-growth relationships can make a major contribution to scientifi c forest management.However,whether diff erences in the response of growth to climate at diff erent altitudes remains unclear.To answer this,264 trees of Larix kaempferi from 88 plots,representing diff erent altitudinal ranges(1000-2100 m)and tree classes were sampled and used to develop tree-ring chronologies.Tree-ring growth(TRG)was either positively(dominant)or negatively(intermediate and suppressed)correlated with climate in diff erent tree classes at diff erent altitudes.TRG was strongly correlated with growing season at low altitudes,but was less sensitive to climate at middle altitudes.It was mainly limited by precipitation and was highly sensitive to climate at low altitudes.Climate-growth relationships at high altitudes were opposite compared to those at low altitudes.TRG of dominant trees was more sensitive to climate change compared to intermediate and suppressed trees.Climate factors(annual temperatures;moisture,the number of frost-free days)had diff erent eff ects on tree-ring growth of diff erent tree classes along altitudinal gradients.It was concluded that the increase in summer temperatures decreased water availability,resulting in a signifi cant decline in growth rates after 2005 at lower altitudes.L.kaempferi is suitable for planting in middle altitudes and dominant trees were the best sampling choice for accurately assessing climate-growth relationships.
基金The National Key Technology R&D Program during the 11th Five-Year Plan Period of China (No. 2009BAG17B02)the National High Technology Research and Development Program of China (863 Program) (No. 2011AA110304)the National Natural Science Foundation of China (No. 50908100)
文摘In order to reduce average arterial vehicle delay, a novel distributed and coordinated traffic control algorithm is developed using the multiple agent system and the reinforce learning (RL). The RL is used to minimize average delay of arterial vehicles by training the interaction ability between agents and exterior environments. The Robertson platoon dispersion model is embedded in the RL algorithm to precisely predict platoon movements on arteries and then the reward function is developed based on the dispersion model and delay equations cited by HCM2000. The performance of the algorithm is evaluated in a Matlab environment and comparisons between the algorithm and the conventional coordination algorithm are conducted in three different traffic load scenarios. Results show that the proposed algorithm outperforms the conventional algorithm in all the scenarios. Moreover, with the increase in saturation degree, the performance is improved more significantly. The results verify the feasibility and efficiency of the established algorithm.
基金the support of Texas A&M University at Qatar for the 2022 Sixth Cycle Seed Grant Project。
文摘The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude.