This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative ...This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .展开更多
Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,su...Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,such as the triple decomposition of motion(TDM)and normal-nilpotent decomposition(NND),have been proposed to analyze the local motions of fluid elements.However,due to the existence of different types and non-uniqueness of Schur forms,as well as various possible definitions of NNDs,confusion has spread widely and is harming the research.This work aims to clean up this confusion.To this end,the complex and real Schur forms are derived constructively from the very basics,with special consideration for their non-uniqueness.Conditions of uniqueness are proposed.After a general discussion of normality and nilpotency,a complex NND and several real NNDs as well as normal-nonnormal decompositions are constructed,with a brief comparison of complex and real decompositions.Based on that,several confusing points are clarified,such as the distinction between NND and TDM,and the intrinsic gap between complex and real NNDs.Besides,the author proposes to extend the real block Schur form and its corresponding NNDs for the complex eigenvalue case to the real eigenvalue case.But their justification is left to further investigations.展开更多
The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive de...The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.展开更多
Let F be the strong p-division ring [4]. This paper is sequel to [1]. Metapositive definite self-conjugate matrix over F is defined and the necessary and sufficient conditions for determining whether a partitioned mat...Let F be the strong p-division ring [4]. This paper is sequel to [1]. Metapositive definite self-conjugate matrix over F is defined and the necessary and sufficient conditions for determining whether a partitioned matrix over F is metapositive definite self-conjugate are given.Moreover,a decomposition of pairwise matrices over F with the same numbers of columns is also presented. Whence some necessary and sufficient conditions for the existence of and the explicit expression for the metapositive definite self-conjugate solution of the matrix equation AXB=C over F are derived.展开更多
The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian ...The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.展开更多
In this paper,the GH-congruence canonical forms of positive semidefinite and definte inite and definite(need not be self-conjugate)quaternion matrices are given,and a neccessary and sufficientcondition of GH-congruenc...In this paper,the GH-congruence canonical forms of positive semidefinite and definte inite and definite(need not be self-conjugate)quaternion matrices are given,and a neccessary and sufficientcondition of GH-congruence for two positive semidifinite(definite)quaternion matrices isgiven also.Then simultaneous GH-congruence reduced forms for two self-conjugate matri-ces and some result about the simultaneous GH-congruence diagonalization of quaternionmatrices are obtained.展开更多
In this paper, we discuss the positive definite problem of a binary quartic form and obtain a necessary and sufficient condition. In addition we give two examples to show that there are some errors in the paper [1].
A matrix is similar to Jordan canonical form over the complex field and the rational canonical form over a number field, respectively. In this paper, we further study the rational canonical form of a matrix over any n...A matrix is similar to Jordan canonical form over the complex field and the rational canonical form over a number field, respectively. In this paper, we further study the rational canonical form of a matrix over any number field. We firstly discuss the elementary divisors of a matrix over a number field. Then, we give the quasi-rational canonical forms of a matrix by combining Jordan and the rational canonical forms. Finally, we show that a matrix is similar to its quasi-rational canonical forms over a number field.展开更多
This work recommends methods of construction of equations of motion of mechanical systems in matrix form. The use of a matrix form allows one to write an equation of dynamics in compact form, convenient for the in ves...This work recommends methods of construction of equations of motion of mechanical systems in matrix form. The use of a matrix form allows one to write an equation of dynamics in compact form, convenient for the in vestigation of multidimensional mechanical systems with the help of computers. Use is made of different methods of constructing equations of motion, based on the basic laws of dynamics as well as on the principles of D Alambert-Le range, Hamilton-Ostrogradski and Gauss.展开更多
For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 30...For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).展开更多
<span style="line-height:1.5;"><span>In this paper, we consider a constrained low rank approximation problem: </span><img src="Edit_57d85c54-7822-4512-aafc-f0b0295a8f75.png" wi...<span style="line-height:1.5;"><span>In this paper, we consider a constrained low rank approximation problem: </span><img src="Edit_57d85c54-7822-4512-aafc-f0b0295a8f75.png" width="100" height="24" alt="" /></span><span style="line-height:1.5;"><span>, where </span><i><span>E</span></i><span> is a given complex matrix, </span><i><span>p</span></i><span> is a positive integer, and </span></span><span style="line-height:1.5;"></span><span style="line-height:1.5;"><span> is the set of the Hermitian nonnegative-definite least squares solution to the matrix equation </span><img src="Edit_ced08299-d2dc-4dbb-907a-4d8d36d2e87a.png" width="60" height="16" alt="" /></span><span style="line-height:1.5;"><span>. We discuss the range of </span><i><span>p</span></i><span> and derive the corresponding explicit solution expression of the constrained low rank approximation problem by matrix decompositions. And an algorithm for the problem is proposed and the numerical example is given to show its feasibility.展开更多
In this paper,we find some mistakes in the paper “Several Inequalities of Matrix Traces” which was published in Chinese Quarterly Journal of Mathematics,Vol.10,No.2.
If an operator is not invertible, we are interested if there is a subspace such that the reduction of the operator to that subspace is invertible. In this paper we give a spectral approach to generalized inverses cons...If an operator is not invertible, we are interested if there is a subspace such that the reduction of the operator to that subspace is invertible. In this paper we give a spectral approach to generalized inverses considering the subspace determined by the range of the spectral projection associated with an operator and a spectral set containing the point 0. We compare the cases, 0 is a simple pole of the resolvent function, 0 is a pole of order n of the resolvent function, 0 is an isolated point of the spectrum, and 0 is contained in a circularly isolated spectral set.展开更多
文摘This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .
文摘Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,such as the triple decomposition of motion(TDM)and normal-nilpotent decomposition(NND),have been proposed to analyze the local motions of fluid elements.However,due to the existence of different types and non-uniqueness of Schur forms,as well as various possible definitions of NNDs,confusion has spread widely and is harming the research.This work aims to clean up this confusion.To this end,the complex and real Schur forms are derived constructively from the very basics,with special consideration for their non-uniqueness.Conditions of uniqueness are proposed.After a general discussion of normality and nilpotency,a complex NND and several real NNDs as well as normal-nonnormal decompositions are constructed,with a brief comparison of complex and real decompositions.Based on that,several confusing points are clarified,such as the distinction between NND and TDM,and the intrinsic gap between complex and real NNDs.Besides,the author proposes to extend the real block Schur form and its corresponding NNDs for the complex eigenvalue case to the real eigenvalue case.But their justification is left to further investigations.
文摘The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.
文摘Let F be the strong p-division ring [4]. This paper is sequel to [1]. Metapositive definite self-conjugate matrix over F is defined and the necessary and sufficient conditions for determining whether a partitioned matrix over F is metapositive definite self-conjugate are given.Moreover,a decomposition of pairwise matrices over F with the same numbers of columns is also presented. Whence some necessary and sufficient conditions for the existence of and the explicit expression for the metapositive definite self-conjugate solution of the matrix equation AXB=C over F are derived.
基金The National Natural Science Foundation of China(No.11371089)the China Postdoctoral Science Foundation(No.2016M601688)
文摘The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.
文摘In this paper,the GH-congruence canonical forms of positive semidefinite and definte inite and definite(need not be self-conjugate)quaternion matrices are given,and a neccessary and sufficientcondition of GH-congruence for two positive semidifinite(definite)quaternion matrices isgiven also.Then simultaneous GH-congruence reduced forms for two self-conjugate matri-ces and some result about the simultaneous GH-congruence diagonalization of quaternionmatrices are obtained.
文摘In this paper, we discuss the positive definite problem of a binary quartic form and obtain a necessary and sufficient condition. In addition we give two examples to show that there are some errors in the paper [1].
文摘A matrix is similar to Jordan canonical form over the complex field and the rational canonical form over a number field, respectively. In this paper, we further study the rational canonical form of a matrix over any number field. We firstly discuss the elementary divisors of a matrix over a number field. Then, we give the quasi-rational canonical forms of a matrix by combining Jordan and the rational canonical forms. Finally, we show that a matrix is similar to its quasi-rational canonical forms over a number field.
文摘We exploit the theory of reproducing kernels to deduce a matrix inequality for the inverse of the restriction of a positive definite Hermitian matrix.
文摘This work recommends methods of construction of equations of motion of mechanical systems in matrix form. The use of a matrix form allows one to write an equation of dynamics in compact form, convenient for the in vestigation of multidimensional mechanical systems with the help of computers. Use is made of different methods of constructing equations of motion, based on the basic laws of dynamics as well as on the principles of D Alambert-Le range, Hamilton-Ostrogradski and Gauss.
文摘For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).
文摘<span style="line-height:1.5;"><span>In this paper, we consider a constrained low rank approximation problem: </span><img src="Edit_57d85c54-7822-4512-aafc-f0b0295a8f75.png" width="100" height="24" alt="" /></span><span style="line-height:1.5;"><span>, where </span><i><span>E</span></i><span> is a given complex matrix, </span><i><span>p</span></i><span> is a positive integer, and </span></span><span style="line-height:1.5;"></span><span style="line-height:1.5;"><span> is the set of the Hermitian nonnegative-definite least squares solution to the matrix equation </span><img src="Edit_ced08299-d2dc-4dbb-907a-4d8d36d2e87a.png" width="60" height="16" alt="" /></span><span style="line-height:1.5;"><span>. We discuss the range of </span><i><span>p</span></i><span> and derive the corresponding explicit solution expression of the constrained low rank approximation problem by matrix decompositions. And an algorithm for the problem is proposed and the numerical example is given to show its feasibility.
文摘In this paper,we find some mistakes in the paper “Several Inequalities of Matrix Traces” which was published in Chinese Quarterly Journal of Mathematics,Vol.10,No.2.
文摘If an operator is not invertible, we are interested if there is a subspace such that the reduction of the operator to that subspace is invertible. In this paper we give a spectral approach to generalized inverses considering the subspace determined by the range of the spectral projection associated with an operator and a spectral set containing the point 0. We compare the cases, 0 is a simple pole of the resolvent function, 0 is a pole of order n of the resolvent function, 0 is an isolated point of the spectrum, and 0 is contained in a circularly isolated spectral set.