Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately ...Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately threatening the stability of underground structures. In order to explore the mechanical properties of rocks under H-M coupling, the corresponding damage constitutive(D-C) model has become the focus of attention. Considering the inadequacy of the current research on rock strength parameters,energy evolution characteristics and D-C model under H-M coupling, the mechanical properties of typical sandstone samples are discussed based on laboratory tests. The results show that the variation of characteristic stresses of sandstone under H-M coupling conforms to the normalized attenuation equation and Mohr-Coulomb(M-C) criterion. The P-W pressure mechanism of sandstone exhibits a dynamic change from softening effect to H-M fracturing effect. The closure stress is mainly provided by cohesive strength, while the initiation stress, damage stress, and peak stress are jointly dominated by cohesive strength and friction strength. In addition, residual stress is attributed to the friction strength formed by the bite of the fracture surface. Subsequently, the energy evolution characteristics of sandstone under H-M coupling were studied, and it was found that P-W pressure weakened the energy storage capacity and energy dissipation capacity of sandstone, and H-M fracturing was an important factor in reducing its energy storage efficiency. Finally, combined with energy dissipation theory and statistical damage theory, two types of D-C models considering P-W pressure are proposed accordingly, and the model parameters can be determined by four methods. The application results indicate that the proposed and modified D-C models have high reliability, and can characterize the mechanical behavior of sandstone under H-M coupling, overcome the inconvenience of existing D-C models due to excessive mechanical parameters,and can be applied to the full-range stress–strain process. The results are conducive to revealing the deformation and damage mechanisms of rocks under H-M coupling, and can provide theoretical guidance for related engineering problems.展开更多
The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multip...The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.展开更多
Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the ...Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the antenna number.However,recent studies suggest that the DOF could be less than the antenna number when strong mutual coupling is considered.We utilize a mutual-coupling-compliant channel model to investigate the DOF of the holographic MIMO(HMIMO)channel and give a upper bound of the DOF with strong mutual coupling.Our numerical simulations demonstrate that a dense array can support more DOF per unit aperture as compared with a half-wavelength MIMO system.展开更多
POM (Princeton ocean model) tentatively taken as the ocean part of an ocean-land atmosphere coupled modcl is verified for the ultimate purpose of studying the landfall process of tropical cyclone (TC) in the western N...POM (Princeton ocean model) tentatively taken as the ocean part of an ocean-land atmosphere coupled modcl is verified for the ultimate purpose of studying the landfall process of tropical cyclone (TC) in the western North Pacific. The POM is tested with monthly mean wind stress in the summer and given lateral boundary conditions. The results indicate that the equilibrium state of the ocean is in accordance with the climate mean, with the error in sea surface temperature (salinity) less than 0.5 ℃ (0.5). The simulated occan currents are reasonable as well.Several numerical experiments are designed to verify the oceanic response to a stationary or moving TC. It is found that the results agree fairly well with the previous work, including both the drop magnitude and the distribution ofsca temperature. Compared with the simple two-layer ocean model used by some other studies, the response of the ocean to a TC is more logical here. The model is also verified in a real case with a TC passing the neighborhood of a buoy station. It is shown that the established ocean model can basically reproduce the sea surface temperature change as observed.展开更多
A new two-way land-atmosphere interaction model (R42_AVIM) is fulfilled by coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences...A new two-way land-atmosphere interaction model (R42_AVIM) is fulfilled by coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS) with the land surface model, Atmosphere-Vegetation-Interaction-Model (AVIM). In this coupled model, physical and biological components of AVIM are both included. Climate base state and land surface physical fluxes simulated by R42_AVIM are analyzed and compared with the results of R42_SSIB [which is coupled by SAMIL_R42L9 and Simplified Simple Biosphere (SSIB) models]. The results show the performance of the new model is closer to the observations. It can basically guarantee that the land surface energy budget is balanced, and can simulate June-July-August (JJA) and December-January- February (DJF) land surface air temperature, sensible heat flux, latent heat flux, precipitation, sea level pressure and other variables reasonably well. Compared with R42_SSIB, there are obvious improvements in the JJA simulations of surface air temperature and surface fluxes. Thus, this land-atmosphere coupled model will offer a good experiment platform for land-atmosphere interaction research.展开更多
For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quanti...For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quantitatively,so an appropriate control plan is determined.A strategy to improve and reduce the coupling relationship of the organization is studied.A correlation matrix of extended tasks is built to analyze the relationship between sub-tasks and manufacturing resources.An optimization method for manufacturing resource configuration is presented based on the coupling model.Finally,a software system for analyzing coupling model about manufacturing organization on internet is developed,and the result shows that the coupling model is effective.展开更多
The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph...The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.展开更多
This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious ...This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated.展开更多
Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the m...Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the meso-scale model MM4, respectively. Through the calculations of equations from the companion paper, parameters representing land surface heterogeneity and suitable for the coupling models were found out. Three cases were simulated for heavy rainfalls during 36 hours, and the sensitivity of short-term weather modeling to the land surface heterogeneity was tested. Through the analysis of the simulations of the three heavy rainfalls, it was demonstrated that BIZ, compared with BOZ, could more realistically reflect the features of the land surface heterogeneity, therefore could more realistically reproduce the circulation and precipitation amount in the heavy rainfall processes of the three cases. This shows that even short-term weather is sensitive to the land surface heterogeneity, which is more obvious with time passing, and whose influence is more pronounced in the lower layer and gradually extends to the middle and upper layer. Through the analysis of these simulations with BlZ, it is suggested that the bulk effect of smaller-scale fluxes (i.e., the momentum, water vapor and sensible heat fluxes) near the s ig nificantly-heterogeneous land surface is to change the larger-scale (i.e., meso-scale) circulation, and then to influence the development of the low-level jets and precipitation. And also, the complexity of the land-atmosphere interaction was shown in these simulations.展开更多
The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contami...The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid_solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure, pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure_saturation_permeability in laboratory.展开更多
A coupling model is proposed in this paper by using the Green Function and Newman's product principle, and the solution method is provided here as well. This model can be used to describe the reservoir inflow and wel...A coupling model is proposed in this paper by using the Green Function and Newman's product principle, and the solution method is provided here as well. This model can be used to describe the reservoir inflow and wellbore flow for fishbone wells in an unsteady flow or pseudo-steady flow state. A case study indicates that the bottom hole pressure declines quickly in the unsteady flow period which is very short. The pressure drop per unit time remains unchanged under the pseudo-steady flow conditions. The distribution of flow rate along the main wellbore shows a wave shape under the unsteady flow condition, and the flow rate distribution in each branch is similar. The flow rate distribution along the main wellbore is irregular "U" shaped under the pseudo-steady flow condition, and the space-symmetrical branches have the same flow distribution pattern. In the initial production period, the flow rate increases significantly as the length of branches and the angle between branches and the main wellbore increase. As the production continues, the length and angle of branches have only a slight effect on the flow in fishbone wells.展开更多
Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory...Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory,the nonlinear Darcy seepage theory and thermodynamics,the heat-fluid-solid coupling model for gassy coal has been improved.The numerical model was founded from the improved multi-field coupling model by COMSOL Multiphysics and gas drainage by borehole down the coal seam enhanced by heat injection was modelled.The results show that the heatfluid-solid model with adsorption effects for gassy coal was well simulated by the improved multi-field model.The mechanism of coal seam gas desorption seepage under the combined action of temperature,stress and adsorption can be well described.Gas desorption and seepage can be enhanced by heat injection into coal seams.The gas drainage rate was directly proportional to the temperature of injected heat in the scope of 30-150 ℃ and increasing in the whole modelleddrainage process (0-1000 d).The increased level was maximum in the initial drainage time and decreasing gradually along with drainage time.The increasing ratio of drainage rate was maximum when the temperature raised from 30 to 60 ℃.Although the drainage rate would increase along with increasing temperature,when exceeding 60 ℃,the increasing ratio of drainage rate with rising temperature would decrease.Gas drainage promotion was more effective in coal seams with lower permeability than with higher permeability.The coal seam temperature in a 5 m distance surrounding the heat injection borehole would rise to around 60 ℃ in 3 months.That was much less than the time of gas drainage in the coal mines in sites with low permeability coal seams.Therefore,it is valuable and feasible to inject heat into coal seams to promote gas drainage,and this has strong feasibility for coal seams with low permeability which are widespread in China.展开更多
Due to the change of initial stress state caused by roadway excavation, the permeability of the coal body may be changed during the excavation process. In this paper, according to the different stress states, the coal...Due to the change of initial stress state caused by roadway excavation, the permeability of the coal body may be changed during the excavation process. In this paper, according to the different stress states, the coal around the roadway was divided into the seepage open zone, seepage orientation zone, seepage decay zone and original seepage zone along the radial direction of the roadway. The loaded gassy coal was treated as a viscoelastic and plastic softened medium, and the mechanical behaviors of the viscoelastic zone, plastic softened zone and broken zone around the roadway were analyzed with the consideration of the loading creep, softening and expansion effect of the gassy coal. According to the law of conservation of mass and the Darcy law, the flow-solid coupled model for the gas transportation of the coal around the roadway was established considering the dynamic evolution of the adsorption characteristics, porosity and permeability of the coal, and the simulation software COMSOL was utilized to numerically simulate the stress state and gas flow regularity around the coal, which provided meaningful reference for investigating the stability of the coal and rock around the roadway.展开更多
A new higher-order continuum model is proposed by considering the coupling and lane changing effects of the vehicles on two adjacent lanes. A stability analysis of the proposed model provides the conditions that ensur...A new higher-order continuum model is proposed by considering the coupling and lane changing effects of the vehicles on two adjacent lanes. A stability analysis of the proposed model provides the conditions that ensure its linear stability. Issues related to lane changing, shock waves and rarefaction waves, local clustering and phase transition are also investigated with numerical experiments. The simulation results show that the proposed model is capable of providing explanations to some particular traffic phenomena commonly observable in real traffic flows.展开更多
The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformatio...The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.展开更多
The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to sim...The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure.展开更多
In this study, the CERES(Crop Estimation through Resource and Environment Synthesis) crop model was coupled with CLM3.5, the land module of the regional climate model RegCM4. The new coupled model was named RegCM4_CER...In this study, the CERES(Crop Estimation through Resource and Environment Synthesis) crop model was coupled with CLM3.5, the land module of the regional climate model RegCM4. The new coupled model was named RegCM4_CERES; and in this model, crop type was further divided into winter wheat, spring wheat, spring maize, summer maize, early rice, late rice,single rice, and other crop types based on each distribution fraction. The development of each crop sub-type was simulated by the corresponding crop model separately, with each planting and harvesting date. A simulation test using RegCM4_CERES was conducted across China from 1999 to 2008; a control test was also performed using the original RegCM4. Data on crop LAI(leaf area index), soil moisture at 10 cm depth, precipitation, and 2 m air temperature were collected to evaluate the performance of RegCM4_CERES. The evaluation provided comparison of single-station time series, regional distributions,seasonal variations, and statistical indices for RegCM4_CERES. The results revealed that the coupled model had an excellent ability to simulate the phonological changes and spatial variations in crops. The consideration of dynamic crop development in RegCM4_CERES corrected the wet bias of the original RegCM4 over North China and the cold bias over South China.However, the degree of improvement was minimal and the statistical indices for RegCM4_CERES were roughly the same as the original RegCM4.展开更多
In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidat...In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidated. A coupling model, which evaluates heat, mass, momentum and radiative fluxes in the SPAC system, is developed for simulating microclimate over plant and bare soil. Especially, it is focussed on the details of turbulence transfer. For illustration, numerical simulation of the water-heat exchange processes at Shapotou Observatory, GAS, Ninxia Province are conducted, and the computational results show that the laws of land-surface processes are rather typical in the arid areas.展开更多
The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capaci...The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capacitance proximity detector is discussed, and the detecting sensitivity of the coupling capacitance detector is analyzed theoretically. Then the sensitivity engineering model, which can reflect the main parameters relationship of the detecting circuit is set up based on the foregoing analyses. It is concluded that: ① the sensitivity is mainly correlative with some parameters including the voltage transmission factor of the demodulator, the oscillating voltage amplitude and the amplitude variation constant of the oscillator; ② the sensitivity is also influenced by the areas of electrodes and the distance between electrodes of the detector.展开更多
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica...The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.展开更多
基金funding support from the National Natural Science Foundation of China(Nos.52174088 and 42277154)the Independent Innovation Research Fund Graduate Free Exploration Project(No.104972024JYS0007)supported by Wuhan University of Technology.
文摘Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately threatening the stability of underground structures. In order to explore the mechanical properties of rocks under H-M coupling, the corresponding damage constitutive(D-C) model has become the focus of attention. Considering the inadequacy of the current research on rock strength parameters,energy evolution characteristics and D-C model under H-M coupling, the mechanical properties of typical sandstone samples are discussed based on laboratory tests. The results show that the variation of characteristic stresses of sandstone under H-M coupling conforms to the normalized attenuation equation and Mohr-Coulomb(M-C) criterion. The P-W pressure mechanism of sandstone exhibits a dynamic change from softening effect to H-M fracturing effect. The closure stress is mainly provided by cohesive strength, while the initiation stress, damage stress, and peak stress are jointly dominated by cohesive strength and friction strength. In addition, residual stress is attributed to the friction strength formed by the bite of the fracture surface. Subsequently, the energy evolution characteristics of sandstone under H-M coupling were studied, and it was found that P-W pressure weakened the energy storage capacity and energy dissipation capacity of sandstone, and H-M fracturing was an important factor in reducing its energy storage efficiency. Finally, combined with energy dissipation theory and statistical damage theory, two types of D-C models considering P-W pressure are proposed accordingly, and the model parameters can be determined by four methods. The application results indicate that the proposed and modified D-C models have high reliability, and can characterize the mechanical behavior of sandstone under H-M coupling, overcome the inconvenience of existing D-C models due to excessive mechanical parameters,and can be applied to the full-range stress–strain process. The results are conducive to revealing the deformation and damage mechanisms of rocks under H-M coupling, and can provide theoretical guidance for related engineering problems.
基金funded by the National Natural Science Foundation of China(Grant No.12272217)。
文摘The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.
基金supported in part by National Key Research and Develop⁃ment Program of China under Grant No.2020YFB1807600.
文摘Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the antenna number.However,recent studies suggest that the DOF could be less than the antenna number when strong mutual coupling is considered.We utilize a mutual-coupling-compliant channel model to investigate the DOF of the holographic MIMO(HMIMO)channel and give a upper bound of the DOF with strong mutual coupling.Our numerical simulations demonstrate that a dense array can support more DOF per unit aperture as compared with a half-wavelength MIMO system.
基金sponsored by the National Natural Science Foundation of China under contrct Nos 40575030,40275018 and 49975014.
文摘POM (Princeton ocean model) tentatively taken as the ocean part of an ocean-land atmosphere coupled modcl is verified for the ultimate purpose of studying the landfall process of tropical cyclone (TC) in the western North Pacific. The POM is tested with monthly mean wind stress in the summer and given lateral boundary conditions. The results indicate that the equilibrium state of the ocean is in accordance with the climate mean, with the error in sea surface temperature (salinity) less than 0.5 ℃ (0.5). The simulated occan currents are reasonable as well.Several numerical experiments are designed to verify the oceanic response to a stationary or moving TC. It is found that the results agree fairly well with the previous work, including both the drop magnitude and the distribution ofsca temperature. Compared with the simple two-layer ocean model used by some other studies, the response of the ocean to a TC is more logical here. The model is also verified in a real case with a TC passing the neighborhood of a buoy station. It is shown that the established ocean model can basically reproduce the sea surface temperature change as observed.
基金This study is jointly supported by the National Key Basic Research 2006CB403607the Chinese Academy of Sciences(CAS)International Partnership Creative Group"The climate system model development and application studies"and the National Natural Science Foundation of China under Grant Nos.40221503,40475027 and 40523001.
文摘A new two-way land-atmosphere interaction model (R42_AVIM) is fulfilled by coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS) with the land surface model, Atmosphere-Vegetation-Interaction-Model (AVIM). In this coupled model, physical and biological components of AVIM are both included. Climate base state and land surface physical fluxes simulated by R42_AVIM are analyzed and compared with the results of R42_SSIB [which is coupled by SAMIL_R42L9 and Simplified Simple Biosphere (SSIB) models]. The results show the performance of the new model is closer to the observations. It can basically guarantee that the land surface energy budget is balanced, and can simulate June-July-August (JJA) and December-January- February (DJF) land surface air temperature, sensible heat flux, latent heat flux, precipitation, sea level pressure and other variables reasonably well. Compared with R42_SSIB, there are obvious improvements in the JJA simulations of surface air temperature and surface fluxes. Thus, this land-atmosphere coupled model will offer a good experiment platform for land-atmosphere interaction research.
基金Supported by the National Defense Industrial Technology Development Program of China~~
文摘For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quantitatively,so an appropriate control plan is determined.A strategy to improve and reduce the coupling relationship of the organization is studied.A correlation matrix of extended tasks is built to analyze the relationship between sub-tasks and manufacturing resources.An optimization method for manufacturing resource configuration is presented based on the coupling model.Finally,a software system for analyzing coupling model about manufacturing organization on internet is developed,and the result shows that the coupling model is effective.
基金support from the OpenGeoSys communitypartially funded by the Prime Minister Research Fellowship,Ministry of Education,Government of India with the project number SB21221901CEPMRF008347.
文摘The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.
基金NationalNaturalScience Emphases Foundation ofChina,No.40335049NationalNaturalScience Foundation ofChina,No.40471059
文摘This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated.
基金the NKBRSF Project! G 1999043400 the CNSF Project! 49735180.
文摘Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the meso-scale model MM4, respectively. Through the calculations of equations from the companion paper, parameters representing land surface heterogeneity and suitable for the coupling models were found out. Three cases were simulated for heavy rainfalls during 36 hours, and the sensitivity of short-term weather modeling to the land surface heterogeneity was tested. Through the analysis of the simulations of the three heavy rainfalls, it was demonstrated that BIZ, compared with BOZ, could more realistically reflect the features of the land surface heterogeneity, therefore could more realistically reproduce the circulation and precipitation amount in the heavy rainfall processes of the three cases. This shows that even short-term weather is sensitive to the land surface heterogeneity, which is more obvious with time passing, and whose influence is more pronounced in the lower layer and gradually extends to the middle and upper layer. Through the analysis of these simulations with BlZ, it is suggested that the bulk effect of smaller-scale fluxes (i.e., the momentum, water vapor and sensible heat fluxes) near the s ig nificantly-heterogeneous land surface is to change the larger-scale (i.e., meso-scale) circulation, and then to influence the development of the low-level jets and precipitation. And also, the complexity of the land-atmosphere interaction was shown in these simulations.
文摘The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid_solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure, pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure_saturation_permeability in laboratory.
基金support from the National Science and Technology Major Projects of China(Grant No. 2011ZX05031-003)
文摘A coupling model is proposed in this paper by using the Green Function and Newman's product principle, and the solution method is provided here as well. This model can be used to describe the reservoir inflow and wellbore flow for fishbone wells in an unsteady flow or pseudo-steady flow state. A case study indicates that the bottom hole pressure declines quickly in the unsteady flow period which is very short. The pressure drop per unit time remains unchanged under the pseudo-steady flow conditions. The distribution of flow rate along the main wellbore shows a wave shape under the unsteady flow condition, and the flow rate distribution in each branch is similar. The flow rate distribution along the main wellbore is irregular "U" shaped under the pseudo-steady flow condition, and the space-symmetrical branches have the same flow distribution pattern. In the initial production period, the flow rate increases significantly as the length of branches and the angle between branches and the main wellbore increase. As the production continues, the length and angle of branches have only a slight effect on the flow in fishbone wells.
基金The authors acknowledge the financial support from the Natural Science Foundation of China(U1704131)Program for Science&Technology Innovation Talents in Universities of Henan Province(18HASTIT018)the Program for Changjiang Scholars and Innovative Research Team in University(IRT_16R22).
文摘Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory,the nonlinear Darcy seepage theory and thermodynamics,the heat-fluid-solid coupling model for gassy coal has been improved.The numerical model was founded from the improved multi-field coupling model by COMSOL Multiphysics and gas drainage by borehole down the coal seam enhanced by heat injection was modelled.The results show that the heatfluid-solid model with adsorption effects for gassy coal was well simulated by the improved multi-field model.The mechanism of coal seam gas desorption seepage under the combined action of temperature,stress and adsorption can be well described.Gas desorption and seepage can be enhanced by heat injection into coal seams.The gas drainage rate was directly proportional to the temperature of injected heat in the scope of 30-150 ℃ and increasing in the whole modelleddrainage process (0-1000 d).The increased level was maximum in the initial drainage time and decreasing gradually along with drainage time.The increasing ratio of drainage rate was maximum when the temperature raised from 30 to 60 ℃.Although the drainage rate would increase along with increasing temperature,when exceeding 60 ℃,the increasing ratio of drainage rate with rising temperature would decrease.Gas drainage promotion was more effective in coal seams with lower permeability than with higher permeability.The coal seam temperature in a 5 m distance surrounding the heat injection borehole would rise to around 60 ℃ in 3 months.That was much less than the time of gas drainage in the coal mines in sites with low permeability coal seams.Therefore,it is valuable and feasible to inject heat into coal seams to promote gas drainage,and this has strong feasibility for coal seams with low permeability which are widespread in China.
基金the financial support from the National Natural Science Foundation for Young Scientists of China (Nos.51604116 and 51604096)Natural Science Foundation ofHenbei Province (No.E2016508036)+1 种基金Hebei State Key Laboratory of Mine Disaster Prevention (No.KJZH2017K08)Basic and Frontier Technology Research Project of Henan Province in 2016 (No.162300410031)
文摘Due to the change of initial stress state caused by roadway excavation, the permeability of the coal body may be changed during the excavation process. In this paper, according to the different stress states, the coal around the roadway was divided into the seepage open zone, seepage orientation zone, seepage decay zone and original seepage zone along the radial direction of the roadway. The loaded gassy coal was treated as a viscoelastic and plastic softened medium, and the mechanical behaviors of the viscoelastic zone, plastic softened zone and broken zone around the roadway were analyzed with the consideration of the loading creep, softening and expansion effect of the gassy coal. According to the law of conservation of mass and the Darcy law, the flow-solid coupled model for the gas transportation of the coal around the roadway was established considering the dynamic evolution of the adsorption characteristics, porosity and permeability of the coal, and the simulation software COMSOL was utilized to numerically simulate the stress state and gas flow regularity around the coal, which provided meaningful reference for investigating the stability of the coal and rock around the roadway.
基金supported by the National High Technology Research and Development Program of China(863)(511-0910-1031)the National"10th Five-Year"Science and Technique Important Program of China(2002BA404A07)
文摘A new higher-order continuum model is proposed by considering the coupling and lane changing effects of the vehicles on two adjacent lanes. A stability analysis of the proposed model provides the conditions that ensure its linear stability. Issues related to lane changing, shock waves and rarefaction waves, local clustering and phase transition are also investigated with numerical experiments. The simulation results show that the proposed model is capable of providing explanations to some particular traffic phenomena commonly observable in real traffic flows.
基金Supported by National Natural Science Foundation of China(Grant No.51375424)
文摘The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.
基金National Natural Science Foundation of People’s Republic of China under Grant Nos.51178011 and 51778386the Key Fundamental Study Development Project of People’s Republic of China under Grant No.2011CB013602。
文摘The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure.
基金financially supported by the National Key R&D Program of China (Grant No. 2017 YFA0603702)the National Natural Science Foundation (Grant Nos. 41705046, 41606112 and 41571019)the Key Research and Development Program of Shandong Province of China (Grant No. 2016JMRH0538)
文摘In this study, the CERES(Crop Estimation through Resource and Environment Synthesis) crop model was coupled with CLM3.5, the land module of the regional climate model RegCM4. The new coupled model was named RegCM4_CERES; and in this model, crop type was further divided into winter wheat, spring wheat, spring maize, summer maize, early rice, late rice,single rice, and other crop types based on each distribution fraction. The development of each crop sub-type was simulated by the corresponding crop model separately, with each planting and harvesting date. A simulation test using RegCM4_CERES was conducted across China from 1999 to 2008; a control test was also performed using the original RegCM4. Data on crop LAI(leaf area index), soil moisture at 10 cm depth, precipitation, and 2 m air temperature were collected to evaluate the performance of RegCM4_CERES. The evaluation provided comparison of single-station time series, regional distributions,seasonal variations, and statistical indices for RegCM4_CERES. The results revealed that the coupled model had an excellent ability to simulate the phonological changes and spatial variations in crops. The consideration of dynamic crop development in RegCM4_CERES corrected the wet bias of the original RegCM4 over North China and the cold bias over South China.However, the degree of improvement was minimal and the statistical indices for RegCM4_CERES were roughly the same as the original RegCM4.
文摘In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidated. A coupling model, which evaluates heat, mass, momentum and radiative fluxes in the SPAC system, is developed for simulating microclimate over plant and bare soil. Especially, it is focussed on the details of turbulence transfer. For illustration, numerical simulation of the water-heat exchange processes at Shapotou Observatory, GAS, Ninxia Province are conducted, and the computational results show that the laws of land-surface processes are rather typical in the arid areas.
文摘The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capacitance proximity detector is discussed, and the detecting sensitivity of the coupling capacitance detector is analyzed theoretically. Then the sensitivity engineering model, which can reflect the main parameters relationship of the detecting circuit is set up based on the foregoing analyses. It is concluded that: ① the sensitivity is mainly correlative with some parameters including the voltage transmission factor of the demodulator, the oscillating voltage amplitude and the amplitude variation constant of the oscillator; ② the sensitivity is also influenced by the areas of electrodes and the distance between electrodes of the detector.
基金Project(51605234)supported by the National Natural Science Foundation of ChinaProjects(2019JJ50510,2019JJ70077)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(18B285,18B552)supported by Scientific Research Fund of Hunan Provincial Education Department,China。
文摘The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.