期刊文献+
共找到3,529篇文章
< 1 2 177 >
每页显示 20 50 100
The Long-Term Effective Mechanism of Rural Poverty Alleviation in China from the Perspective of Ecological Management 被引量:1
1
作者 LIANG Jun-si Teaching and Research Department of Ideological and Political Theory Courses,Gannan Medical University,Ganzhou 341000,China 《Asian Agricultural Research》 2010年第8期31-35,39,共6页
Based on the ecological environmental situation of poverty-stricken areas in China and the domestic and foreign research results,the long-term effective mechanism of sustainable poverty alleviation in China is establi... Based on the ecological environmental situation of poverty-stricken areas in China and the domestic and foreign research results,the long-term effective mechanism of sustainable poverty alleviation in China is established(the ideological premise is ecological culture,the material base is ecological economy and the basic guarantee is ecological system) from the perspective of ecological management.To be specific,ecological culture,the ideological premise of rural sustainable poverty alleviation in China,includes two aspects:the first one is upholding the Marxism,passing on the Chinese traditional ecological wisdom and fostering ecological consciousness;the second one is mirroring the thought of western modern ecological ethics,emphasizing ecological criticism and redoubling the ecological education.As for ecological economy,the material guarantee for sustainable poverty alleviation in Chinese rural poverty-stricken areas,also contents two aspects.The first one is promoting the way of "clean production" and developing ecological industry;the second one is building ecological concept of consumption and establishing the ecological lifestyle.In addition,ecological system,the basic guarantee of sustainable poverty alleviation in Chinese rural poverty-stricken areas,covers three terms.The first one is implementing the ecological policies and stipulating ecological plan;the second one is establishing perfect ecological legislation and ecological system and intensifying their implementation;the third one is enforcing ecological management in the process of sustainable poverty alleviation.Through the establishment of the above mechanism,we look forward to realizing sustainability of economic development and poverty alleviation effects in the process of poverty alleviation in Chinese rural areas,as well as ecological management of the poverty-stricken areas. 展开更多
关键词 ECOLOGICAL MANAGEMENT RURAL areas SUSTAINABLE pove
下载PDF
Countermeasures for Establishing a Long-term Security Mechanism for Landless Farmers
2
作者 Jiefang ZHU 《Asian Agricultural Research》 2020年第1期25-27,31,共4页
In the process of urbanization,farmers will inevitably lose their land,which is resulted from the large-scale requisition of rural collective land.The imperfect social security system in rural areas has resulted in a ... In the process of urbanization,farmers will inevitably lose their land,which is resulted from the large-scale requisition of rural collective land.The imperfect social security system in rural areas has resulted in a large number of landless farmers being transformed into urban poor people.Therefore,proper resettlement of landless farmers and the establishment of a long-term security mechanism for ensuring the basic livelihood of landless farmers are important issues that need to be resolved in the process of China’s social and economic development. 展开更多
关键词 Landless FARMERS long-term SECURITY mechanism COUNtermEASURES
下载PDF
Building Indoor Dangerous Behavior Recognition Based on LSTM-GCN with Attention Mechanism 被引量:1
3
作者 Qingyue Zhao Qiaoyu Gu +2 位作者 Zhijun Gao Shipian Shao Xinyuan Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1773-1788,共16页
Building indoor dangerous behavior recognition is a specific application in the field of abnormal human recognition.A human dangerous behavior recognition method based on LSTM-GCN with attention mechanism(GLA)model wa... Building indoor dangerous behavior recognition is a specific application in the field of abnormal human recognition.A human dangerous behavior recognition method based on LSTM-GCN with attention mechanism(GLA)model was proposed aiming at the problem that the existing human skeleton-based action recognition methods cannot fully extract the temporal and spatial features.The network connects GCN and LSTMnetwork in series,and inputs the skeleton sequence extracted by GCN that contains spatial information into the LSTM layer for time sequence feature extraction,which fully excavates the temporal and spatial features of the skeleton sequence.Finally,an attention layer is designed to enhance the features of key bone points,and Softmax is used to classify and identify dangerous behaviors.The dangerous behavior datasets are derived from NTU-RGB+D and Kinetics data sets.Experimental results show that the proposed method can effectively identify some dangerous behaviors in the building,and its accuracy is higher than those of other similar methods. 展开更多
关键词 Human skeleton building indoor dangerous behaviors recognition graph convolution network long short term memory network attention mechanism
下载PDF
Could Long-Term Stability Last Forever?
4
作者 Maria K. Koleva 《Journal of Modern Physics》 CAS 2023年第4期450-460,共11页
The subject of the present paper is to prove that the recently introduced conjecture of boundedness puts a ban over the view of stability as asymptotic property. This result comes in sharp contrast with the prescripti... The subject of the present paper is to prove that the recently introduced conjecture of boundedness puts a ban over the view of stability as asymptotic property. This result comes in sharp contrast with the prescription of the traditional thermodynamics and statistical physics which consider the existence of equilibrium as asymptotic property of all systems. The difference commences from the use of infinitesimal calculus as the basic implement for modelling by the latter while the primary premise of the conjecture of boundedness is sustaining the energy/matter/information permanently bounded and finite. The latter property overrules the infinitesimal calculus as the major implement of modelling because, among all, it is proven that the traditional one suffers unsoluble difficulties. 展开更多
关键词 long-term Stability Equilibrium Infinitesimal Calculus BOUNDEDNESS Decomposition Theorem Certain Information Universal mechanism for Collapse
下载PDF
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Fe-Ni-Co-BASE SUPERALLOY AFTER LONGTERM AGING AT 650℃ 被引量:2
5
作者 WANG Shuhe GUO Jianting LAI Wanhui GE Yunlong TAN Minghui LI Hui Institute of Metal Research,Academia Sinica,Shenyang,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1991年第3期194-198,共5页
The microstructure and mechanical properties of a Ni-Fe-Co base superalloy with low thermal expansion coefficient after aging at 650℃ for 200,500,1000 and 2000 h have been investigated.It was found that they are stab... The microstructure and mechanical properties of a Ni-Fe-Co base superalloy with low thermal expansion coefficient after aging at 650℃ for 200,500,1000 and 2000 h have been investigated.It was found that they are stable at 650℃.This alloy is believed to.fill the re- quirements for long time service to aircraft engine. 展开更多
关键词 SUPERALLOY MICROSTRUCTURE mechanical property long-term aging
下载PDF
基于注意力机制与LSTM-CCN的月降水量预测 被引量:1
6
作者 周祥 张世明 +1 位作者 苏林鹏 张守平 《人民长江》 北大核心 2024年第6期129-135,共7页
针对现有月降水量预测方法预测准确性不高的问题,提出一种基于注意力机制与LSTM-CCN的月降水量预测方法。首先,利用长短时记忆神经网络(long short-term memory neural network,LSTM)提取气象数据在时间维度的特征分布,从时间相关性方... 针对现有月降水量预测方法预测准确性不高的问题,提出一种基于注意力机制与LSTM-CCN的月降水量预测方法。首先,利用长短时记忆神经网络(long short-term memory neural network,LSTM)提取气象数据在时间维度的特征分布,从时间相关性方面捕获相邻时间段或长距离气象数据段中的统计分布;其次,利用因果卷积神经网络(causal convolutional network,CCN)将气象数据映射到空间维度,深层次地从空间维度捕获气象数据在空间中的特征统计分布;再次,以并联的方式将时间和空间特征作为交叉注意力网络的输入,构造融合的时空特征;最后,以长短时记忆神经网络构造解码器,并将融合的时空特征作为解码器的输入,预测的月降水量作为输出。选取河南省新乡市2001~2017年数据集进行测试,结果表明:所提出方法的均方根误差仅为13.08 mm,相比主流方法具有更低的预测误差。研究成果可为提高气象预测的准确性和实用性提供参考。 展开更多
关键词 月降水量预测 多层注意力机制 因果卷积神经网络 长短时记忆神经网络
下载PDF
基于AM-LSTM的飞行区航空器滑行轨迹预测与冲突识别 被引量:1
7
作者 王兴隆 许晏丰 《中国安全科学学报》 CAS CSCD 北大核心 2024年第1期116-124,共9页
为解决航空器点源定位难以有效预测而引发冲突风险愈来愈多的问题,构建基于注意力机制(AM)和长短期记忆网络(LSTM)的时间序列轨迹预测模型AM-LSTM,预测未来短时间内飞行区航空器的瞬时点源位置;在此基础上,根据航空器型号和滑行航向对... 为解决航空器点源定位难以有效预测而引发冲突风险愈来愈多的问题,构建基于注意力机制(AM)和长短期记忆网络(LSTM)的时间序列轨迹预测模型AM-LSTM,预测未来短时间内飞行区航空器的瞬时点源位置;在此基础上,根据航空器型号和滑行航向对其进行轮廓扩展,以航空器速度作为安全距离权重,通过射线法实现轮廓冲突的判定;并以乌鲁木齐地窝堡机场为例进行验证,利用训练完成的轨迹预测模型预测飞行区航空器滑行轨迹,以识别航空器轮廓间的滑行冲突。结果表明:AM-LSTM预测模型能够准确预测飞行区航空器运动轨迹。未来3 s内轨迹位置预测的平均位移误差为1.05 m,轨迹点位置预测精准性可达94.37%,故能在轨迹预测的基础上精确识别滑行冲突风险,有利于保障飞行区的安全运行。 展开更多
关键词 注意力机制(AM) 长短期记忆网络(LSTM) 飞行区 航空器滑行 滑行轨迹
下载PDF
基于注意力机制的CNN-BiLSTM的IGBT剩余使用寿命预测 被引量:2
8
作者 张金萍 薛治伦 +3 位作者 陈航 孙培奇 高策 段宜征 《半导体技术》 CAS 北大核心 2024年第4期373-379,共7页
针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制... 针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制加权处理特征参数。使用IGBT加速老化数据集对提出的模型进行验证。结果表明,对比自回归差分移动平均(ARIMA)、长短期记忆(LSTM)、多层LSTM(Multi-LSTM)、 BiLSTM预测模型,在均方根误差和决定系数等评价指标方面该模型的性能最优。验证了提出的寿命预测模型对IGBT失效预测是有效的。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 失效预测 加速老化 长短期记忆(LSTM) 注意力机制 卷积神经网络(CNN)
下载PDF
基于CBAM-LSTM的风电集群功率短期预测方法 被引量:1
9
作者 张哲 王勃 《东北电力大学学报》 2024年第1期1-8,共8页
风电功率的精准预测对我国实现“碳达峰”、“碳中和”的目标具有重要意义。传统的风电功率预测方法往往忽视了时间序列数据中的长期依赖关系和空间相关性,导致预测结果不准确。为了解决这个问题,文中提出了了卷积块注意力机制(Convolut... 风电功率的精准预测对我国实现“碳达峰”、“碳中和”的目标具有重要意义。传统的风电功率预测方法往往忽视了时间序列数据中的长期依赖关系和空间相关性,导致预测结果不准确。为了解决这个问题,文中提出了了卷积块注意力机制(Convolutional Block Attention Module, CBAM)和长短时记忆网络(Long Short-Term Memory, LSTM)相结合的模型。首先,使用CBAM对风电功率时间序列数据特征和数值天气预报中蕴含的空间特性进行提取,该模块能够自适应地学习时间和空间上的重要特征;然后,将提取的特征输入到LSTM层结构中进行功率预测。为了验证所提方法的有效性,使用中国吉林省某风电场的数据集进行验证,实验结果表明,与其他功率预测方法相比,文中所提方法平均绝对误差(Mean Absolute Error, MAE)平均降低2.67%;决定系数(R-Square, R2)平均提高23%;均方根误差(Root Mean Square Error, RMSE)平均降低2.69%。 展开更多
关键词 风电功率 卷积块注意力机制 长短时记忆神经网络 短期风电集群功率预测
下载PDF
基于自注意力机制和改进的K-BiLSTM的水产养殖水体溶解氧含量预测模型
10
作者 冯国富 卢胜涛 +1 位作者 陈明 王耀辉 《江苏农业学报》 CSCD 北大核心 2024年第3期490-499,共10页
为精确预测水产养殖水体溶解氧含量,本研究提出一种基于自注意力机制(ATTN)和改进的K-means聚类-基于残差和批标准化(BN)的双向长短期记忆网络(BiLSTM)的水产养殖水体溶解氧含量预测模型。首先,根据环境数据的相似性,使用改进的K-means... 为精确预测水产养殖水体溶解氧含量,本研究提出一种基于自注意力机制(ATTN)和改进的K-means聚类-基于残差和批标准化(BN)的双向长短期记忆网络(BiLSTM)的水产养殖水体溶解氧含量预测模型。首先,根据环境数据的相似性,使用改进的K-means算法将数据划分成若干个类别;然后,在BiLSTM基础上构建残差连接和加入BN完成高层次特征提取,利用BiLSTM的长期记忆能力保存特征信息;最后,引入自注意力机制突出不同时间节点数据特征的重要性,进一步提升模型的性能。试验结果表明,本研究提出的基于自注意力机制和改进的K-BiLSTM模型的平均绝对误差为0.238、均方根误差为0.322、平均绝对百分比误差为0.035,与单一的BP模型、CNN-LSTM模型、传统的K-means-基于残差和BN的BiLSTM-ATTN等模型相比具有更优的预测性能和泛化能力。 展开更多
关键词 水产养殖 溶解氧预测 K-MEANS聚类 双向长短期记忆网络(BiLSTM) 自注意力机制
下载PDF
基于CNN-LSTM-Attention的月生活需水预测研究
11
作者 陈星 沈紫菡 +1 位作者 许钦 蔡晶 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第5期1-6,共6页
需水预测是进行水资源配置的重要部分,对于水资源合理开发利用和社会可持续发展有重要指导意义.本文以陕西省为研究区,结合大数据分析法,提出一种基于CNN-LSTM-Attention的月生活需水预测模型.首先,通过卷积神经网络(convolutional neur... 需水预测是进行水资源配置的重要部分,对于水资源合理开发利用和社会可持续发展有重要指导意义.本文以陕西省为研究区,结合大数据分析法,提出一种基于CNN-LSTM-Attention的月生活需水预测模型.首先,通过卷积神经网络(convolutional neural networks,CNN)提取数据动态变化特征,然后利用长短期记忆(long short-term memory,LSTM)网络对提取的特征进行学习训练,最后使用注意力(attention)机制分配LSTM隐含层不同权重,预测月生活需水量并对比实际数据.结果表明,CNN-LSTM-Attention模型的相对平均误差值和决定系数(R2)分别为2.54%、0.95,满足预测精度需求,相比于LSTM模型预测精度更高.进一步证明了模型预测的合理性,可为陕西省水资源规划提供指导. 展开更多
关键词 月尺度 需水预测 卷积神经网络 长短期记忆网络 注意力机制 因子筛选
下载PDF
组合模型对管道腐蚀速率预测的效能研究--基于注意力机制增强的CNN与LSTM模型
12
作者 骆正山 杜丹 +1 位作者 骆济豪 王小完 《安全与环境学报》 CAS CSCD 北大核心 2024年第11期4263-4269,共7页
为评估卷积神经网络(Convolutional Neural Network,CNN)、长短期记忆(Long Short-Term Memory,LSTM)网络及结合的CNN-LSTM模型在管道腐蚀速率预测中的性能表现,特别引入注意力机制,以期提高模型对关键特征的捕捉能力和预测的准确性。... 为评估卷积神经网络(Convolutional Neural Network,CNN)、长短期记忆(Long Short-Term Memory,LSTM)网络及结合的CNN-LSTM模型在管道腐蚀速率预测中的性能表现,特别引入注意力机制,以期提高模型对关键特征的捕捉能力和预测的准确性。分析影响管道腐蚀速率的环境因素作为模型输入,并通过注意力机制优化特征表示。结果表明,结合注意力机制的CNN-LSTM模型在准确性和可靠性上超越了单独的CNN或LSTM模型。这一结果不仅展示了深度学习模型通过技术增强了处理复杂数据的能力,也为实际工业应用中的时间序列预测提供了新的视角,同时证实了利用深度学习技术对管道腐蚀速率进行精确预测的可行性和有效性。 展开更多
关键词 安全工程 管道腐蚀速率预测 卷积神经网络(CNN) 长短期记忆(LSTM) 注意力机制 时间序列分析
下载PDF
产教融合背景下研究生工作站长效建设机制探究——以东北农业大学-热科院品资所研究生工作站为例
13
作者 徐良梅 陈志辉 +4 位作者 李仲玉 刘忠华 姚昆 武洪志 郁希龙 《吉林农业科技学院学报》 2024年第3期69-71,86,共4页
研究生工作站是推进产教融合的重要平台,在畜牧领域专业学位研究生培养模式的改革创新、培养高质量研究生等方面有重要作用,也是创新型、复合型人才培养的最佳途径之一。文章以东北农业大学——中国热带农业科学院热带作物品种资源研究... 研究生工作站是推进产教融合的重要平台,在畜牧领域专业学位研究生培养模式的改革创新、培养高质量研究生等方面有重要作用,也是创新型、复合型人才培养的最佳途径之一。文章以东北农业大学——中国热带农业科学院热带作物品种资源研究所研究生工作站为例,解析了其创新实践和长效建设的机制,并对研究生工作站的发展提出了可持续性的建议。 展开更多
关键词 工作站 研究生培养 长效机制 创新实践
下载PDF
CEEMDAN-WPE-CLSA超短期风电功率预测方法研究
14
作者 李杰 孟凡熙 +1 位作者 牛明博 张懿璞 《大连交通大学学报》 CAS 2024年第2期101-108,共8页
提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,... 提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,降低原始序列的非线性和波动性;其次,根据加权排列熵计算各模态分量间的相似性并对相似的分量进行重组,以修正自适应噪声完全集合经验模态分解的过度分解问题,使得修正后的模态分量更具规律性;最后,将重组后的分量输入卷积长短期记忆网络进行时序建模,并利用自注意力机制对卷积长短期记忆网络的神经元权重进行重新分配,提高了卷积长短期记忆网络对输入特征不确定性的适应能力。在此基础上,明确了自注意力机制和自适应噪声完全集合经验模态分解、加权排列熵在风电功率预测中的作用机制,以及风电功率信号包含的重要物理信息,证明了自适应噪声完全集合经验模态分解、加权排列熵以及自注意力机制在风电功率信号模态分解和长短期记忆网络隐层输出权重分配中的有效性。 展开更多
关键词 超短期风电功率预测 自适应噪声完全集合经验模态分解 加权排列熵 卷积长短期记忆网络 自注意力机制
下载PDF
基于Transformer-LSTM的闽南语唇语识别
15
作者 曾蔚 罗仙仙 王鸿伟 《泉州师范学院学报》 2024年第2期10-17,共8页
针对端到端句子级闽南语唇语识别的问题,提出一种基于Transformer和长短时记忆网络(LSTM)的编解码模型.编码器采用时空卷积神经网络及Transformer编码器用于提取唇读序列时空特征,解码器采用长短时记忆网络并结合交叉注意力机制用于文... 针对端到端句子级闽南语唇语识别的问题,提出一种基于Transformer和长短时记忆网络(LSTM)的编解码模型.编码器采用时空卷积神经网络及Transformer编码器用于提取唇读序列时空特征,解码器采用长短时记忆网络并结合交叉注意力机制用于文本序列预测.最后,在自建闽南语唇语数据集上进行实验.实验结果表明:模型能有效地提高唇语识别的准确率. 展开更多
关键词 唇语识别 闽南语 TRANSFORMER 长短时记忆网络(LSTM) 用时空卷积神经网络 注意力机制 端到端模型
下载PDF
基于CNN-BiLSTM的油田注水流量预测
16
作者 李艳辉 吕行 《吉林大学学报(信息科学版)》 CAS 2024年第4期625-631,共7页
针对深度学习中的RNN(Recurrent Neural Networks)常用于时间序列预测,但其存在难以对历史序列进行特征提取、以及无法突出关键信息的影响且时间序列过长时早期信息易丢失等问题,提出一种基于双重注意力机制CNN(Convolutional Neural Ne... 针对深度学习中的RNN(Recurrent Neural Networks)常用于时间序列预测,但其存在难以对历史序列进行特征提取、以及无法突出关键信息的影响且时间序列过长时早期信息易丢失等问题,提出一种基于双重注意力机制CNN(Convolutional Neural Networks)-BiLSTM(Bi-directional Long Short-Term Memory)的油田注水流量预测方法。该方法以油田历史注水数据为输入,利用CNN层提取历史注水数据特征,并引入特征注意力机制层,通过计算权重值的方式为特征赋予相应权重,使关键特征更容易得到较大权重,进而对预测结果产生影响;BiLSTM层对数据进行时序建模,并引入时间步注意力机制,通过选取关键时间步并突出该时间步的隐藏状态表达,使早期隐藏状态不会随时间消失,能提升模型对长时间序列的预测效果,最后完成流量预测。以公开数据集和中国南部某地区油田注水数据为算例,并与MLP(Multilayer Perceptron)、GRU(Gate Recurrent Unit)、LSTM(Long Short-Term Memory)、BiLSTM,CNN进行对比,证明该方法在油田注水流量预测中精度更高,可帮助油田制定生产计划、减少资源浪费以及提高注采率,具有一定的实际工程应用价值。 展开更多
关键词 流量预测 卷积神经网络 长短期记忆神经网络 注意力机制
下载PDF
基于改进LSTM网络的无人机MEMS-IMU零偏在线标定方法
17
作者 程向红 吴昕怡 +1 位作者 刘丰宇 钟志伟 《中国惯性技术学报》 EI CSCD 北大核心 2024年第3期213-218,共6页
针对在卫星信号拒止、视觉系统退化场景中无人机MEMS-IMU零偏无法准确估计并补偿导致导航误差迅速发散的问题,提出一种基于改进长短时记忆(LSTM)网络的零偏在线标定方法。首先,为解决MEMS-IMU零偏数据非线性强、传统循环时间网络训练效... 针对在卫星信号拒止、视觉系统退化场景中无人机MEMS-IMU零偏无法准确估计并补偿导致导航误差迅速发散的问题,提出一种基于改进长短时记忆(LSTM)网络的零偏在线标定方法。首先,为解决MEMS-IMU零偏数据非线性强、传统循环时间网络训练效果差的问题,设计序列到序列的LSTM神经网络结构,引入教师强迫机制,提高了网络特征学习能力。然后,在导航过程中使用训练后的网络对MEMS-IMU零偏在线标定,补偿后的IMU量测与视觉信息联合优化,保证了导航定位精度。实验结果表明,在纯惯性导航实验中,所提方法的绝对位置误差比传统LSTM方法减小了6.5%;在EUROC数据集下进行的视觉惯性组合导航实验中,所提方法的平均绝对位置误差比传统LSTM方法减小了15%。 展开更多
关键词 无人机导航定位 微惯性测量单元 在线标定 长短时记忆神经网络
下载PDF
基于LSTM-SAFCN模型的生物质锅炉NO_(x)排放浓度预测
18
作者 何德峰 刘明裕 +2 位作者 孙芷菲 王秀丽 李廉明 《高技术通讯》 CAS 北大核心 2024年第1期92-100,共9页
针对生物质锅炉燃烧过程的动态特性,提出一种改进的长短期记忆-自注意力机制全卷积神经网络(LSTM-SAFCN)模型用于预测NO_(x)排放浓度。首先利用完全自适应噪声集合经验模态分解法(CEEMDAN)对数据进行预处理,消除数据噪声对NO_(x)排放浓... 针对生物质锅炉燃烧过程的动态特性,提出一种改进的长短期记忆-自注意力机制全卷积神经网络(LSTM-SAFCN)模型用于预测NO_(x)排放浓度。首先利用完全自适应噪声集合经验模态分解法(CEEMDAN)对数据进行预处理,消除数据噪声对NO_(x)排放浓度预测的影响;其次融合自注意力机制与长短时记忆-全卷积神经网络(LSTM-FCN)进行特征提取与预测建模,该拓展方法能够同时兼顾时间序列数据的局部细节与长期趋势特征;最后,利用生物质热电联产系统的实际运行数据验证了所提算法的有效性。 展开更多
关键词 生物质锅炉 NO_(x)排放浓度预测 经验模态分解 长短时记忆-全卷积神经网络(LSTM-FCN) 自注意力机制
下载PDF
基于改进注意力机制的时间卷积网络-长短期记忆网络短期电力负荷预测
19
作者 刘伟 王洪志 《电气技术》 2024年第10期8-14,共7页
为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的... 为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的时序特征与非时序数据组合,并输入LSTM模型中进行训练;最后,采用贝叶斯优化方法进行超参数寻优以获得TCN-LSTM模型的最优参数,引入通过多层感知器(MLP)改进的注意力机制以减少历史信息丢失并加强重要信息的影响,完成短期负荷预测。通过对比多种深度学习模型的预测效果表明,本文所提模型的短期电力负荷预测准确度更高。 展开更多
关键词 短期电力负荷预测 改进注意力机制 贝叶斯优化 多层感知器(MLP) 时间卷积网络(TCN) 长短期记忆(LSTM)网络
下载PDF
基于改进U-Net网络的相位解包裹技术研究 被引量:2
20
作者 徐瑞书 罗笑南 +5 位作者 沈瑶琼 郭创为 张文涛 管钰晴 傅云霞 雷李华 《红外与激光工程》 EI CSCD 北大核心 2024年第2期120-133,共14页
提出了一种结合深度学习的空间相位解包裹方法,采用基于改进U-Net网络的编码器-解码器架构,同时加入包含双向长短期记忆网络(BILSTM)的CBiLSTM模块,并且结合注意力机制,避免了典型卷积神经网络学习全局空间依赖关系的固有缺陷的同时增... 提出了一种结合深度学习的空间相位解包裹方法,采用基于改进U-Net网络的编码器-解码器架构,同时加入包含双向长短期记忆网络(BILSTM)的CBiLSTM模块,并且结合注意力机制,避免了典型卷积神经网络学习全局空间依赖关系的固有缺陷的同时增强了深度学习模型对相位解包裹任务中的关键信息的关注能力。通过大量的模拟数据,验证了文中方法在严重噪声(SNR=0)、不连续条件和混叠条件下的鲁棒性,在以上三种情况下,同其他深度学习网络模型进行对比,文中所提出的网络模型的归一化均方根误差(NRMSE)分别为0.75%、1.81%和1.68%;结构相似性指数(SSIM)分别为0.98、0.92和0.94;峰值信噪比(PSNR)分别为40.87、32.56、37.38;同时计算时间显著减少,适合应用到需要快速准确的空间相位解包裹任务中去。通过实际测量数据,验证了文中提出网络模型的可行性。该研究将双向长短期记忆网络(BILSTM)和注意力机制同时引入光学相位解包裹问题中,为解决复杂相位场的解包裹提供了新的思路和方案。 展开更多
关键词 相位解包裹 深度学习 注意力机制 长短期记忆网络 卷积神经网络
下载PDF
上一页 1 2 177 下一页 到第
使用帮助 返回顶部