Existing far field expressions of second order potentials are by no means complete.Hence there has been no exact far field expression of second order potentials.In this paper the far field expression for Φ_d^((2)) is...Existing far field expressions of second order potentials are by no means complete.Hence there has been no exact far field expression of second order potentials.In this paper the far field expression for Φ_d^((2)) is purposely avoided in deducing the formulae of second order forces and a series of functions Φ_(dRn)^((?)) are used.The far field expression of is given,which for (x,U,z)∈Σ,φ_(dRn)^((2))(?) φ_d^((2)).Using these properties formulae for calculating second order diffraction forces are obtained.To calculate the integral ∫∫_(?)1/g f_(?)Ψ_(?)ds it is divided into two parts.One is the integral over a finite domain and the function under the integral is continuous,so the usual approximate integration formulae may be used. The other is the integral over an infinite domain.Using the far field expression of first order potentials,formulae for calculating the integral to meet given accuracies are given. The mooring force in surge direction is used for comparison between numerical predictions and experimental measurements.The predicted results are checked against the measured value in a specially designed test.In the low frequency domain of interest,the mooring forces in surge,for calculated and experimental spectra are in good consistency so long as the damping coefficients is choosen appropriately.展开更多
We introduce a mathematical model based on a concept of intrinsic mode in order to analyse and synthesise optical wave propagation and radiation occurring in a non-uniform optical waveguide used in integrated optics a...We introduce a mathematical model based on a concept of intrinsic mode in order to analyse and synthesise optical wave propagation and radiation occurring in a non-uniform optical waveguide used in integrated optics as optical coupler. The model is based on numerical evaluation of electromagnetic wave by applying an intrinsic field integral to evaluate the field behaviour inside the optical waveguide. To analyse the field distribution inside the non-uniform waveguide and predict the beam propagation of optical energy involved in the propagation process, it is necessary to track the motion of any observation point along the tapered waveguide itself. Physically, the rays of the spectrum undergo reflections on the waveguide boundaries until the cut-off occurs and the phenomena of radiation begin. The numerical results show good agreement with those obtained by classical methods of evaluation used bv other works.展开更多
文摘Existing far field expressions of second order potentials are by no means complete.Hence there has been no exact far field expression of second order potentials.In this paper the far field expression for Φ_d^((2)) is purposely avoided in deducing the formulae of second order forces and a series of functions Φ_(dRn)^((?)) are used.The far field expression of is given,which for (x,U,z)∈Σ,φ_(dRn)^((2))(?) φ_d^((2)).Using these properties formulae for calculating second order diffraction forces are obtained.To calculate the integral ∫∫_(?)1/g f_(?)Ψ_(?)ds it is divided into two parts.One is the integral over a finite domain and the function under the integral is continuous,so the usual approximate integration formulae may be used. The other is the integral over an infinite domain.Using the far field expression of first order potentials,formulae for calculating the integral to meet given accuracies are given. The mooring force in surge direction is used for comparison between numerical predictions and experimental measurements.The predicted results are checked against the measured value in a specially designed test.In the low frequency domain of interest,the mooring forces in surge,for calculated and experimental spectra are in good consistency so long as the damping coefficients is choosen appropriately.
基金co-supported by the University of Sciences and Technology of Oran Mohamed Boudiaf(USTOMB)the Centre of Satellites Development(CDS),Oran,Algeria
文摘We introduce a mathematical model based on a concept of intrinsic mode in order to analyse and synthesise optical wave propagation and radiation occurring in a non-uniform optical waveguide used in integrated optics as optical coupler. The model is based on numerical evaluation of electromagnetic wave by applying an intrinsic field integral to evaluate the field behaviour inside the optical waveguide. To analyse the field distribution inside the non-uniform waveguide and predict the beam propagation of optical energy involved in the propagation process, it is necessary to track the motion of any observation point along the tapered waveguide itself. Physically, the rays of the spectrum undergo reflections on the waveguide boundaries until the cut-off occurs and the phenomena of radiation begin. The numerical results show good agreement with those obtained by classical methods of evaluation used bv other works.