The dynamical effects on electron-positron pair creation from a vacuum caused by the switching processes of a super- critical well potential are investigated in detail. The results show that only when the switching on...The dynamical effects on electron-positron pair creation from a vacuum caused by the switching processes of a super- critical well potential are investigated in detail. The results show that only when the switching on and switching off time both increase will the final pair yield converge to the integer of embedded bound states nearly exponentially. But a single adiabatic switching on or switching off cannot lead to an integer pair yield. If the potential is turned on abruptly, associated with the discrete and embedded bound states, there is multi-frequency oscillation around the pair number's saturation. The slowly switching on can suppress the amplitude of this oscillation and reduce the final pair yield. The switching off can also reduce the final pair number in the same order of magnitude. The evolution of a single-pair number shows a robust long range correlation between particle and antiparticle. For an adiabatic switching case, the single-pair dominates the early pair creation, their upper limit value is equal to the integer, and these single-pairs will totally disentangle during the switching off.展开更多
We analyze the line data from solar flares to present evidence for the emission spectrum of the recently discussed electron-proton pairs at high temperatures. We also point out that since the pairing phenomenon provid...We analyze the line data from solar flares to present evidence for the emission spectrum of the recently discussed electron-proton pairs at high temperatures. We also point out that since the pairing phenomenon provides an additional source for these lines—the conventional source being the highly ionized high-Z atoms already existing in the solar atmosphere, we have a plausible explanation of the FIP effect.展开更多
The space-time ladder theory reveals that the formation of electronic tornadoes,or the formation of electronic dissipative structures,to be precise,the enhancement of electronic Energy Qi field is the basis of superco...The space-time ladder theory reveals that the formation of electronic tornadoes,or the formation of electronic dissipative structures,to be precise,the enhancement of electronic Energy Qi field is the basis of superconductivity.The surrounding area of the electronic tornado is expanding,which is the basis of the Meissner effect,and the center is contracting,which is the basis of the pinning force.When the attractive force of the Energy Qi field is greater than the Coulomb repulsive force,the electrons form a Cooper pair and release dark energy into virtual space-time.When the dark energy increases to a certain extent,the virtual space-time frees the Cooper pair and forms an electron-virtual space-time wave,which fluctuates freely in the superconducting material,which is the basis for the superconducting resistance to be zero.This is similar to the principle of a hot air balloon.The virtual space-time is hot air and the electron pair is a hot air balloon device.Conductor electrons are free and easy to emit dark energy,resulting in insufficient dark energy,and it is not easy to form electron-pair virtual space-time waves,so the superconducting critical temperature is very low.This is because the emission coefficient of the conductor is too high.Insulator electrons are not easy to emit dark energy and easily form electron-pair virtual space-time waves.Therefore,the superconducting critical temperature is slightly higher because of the low emission coefficient of the insulator.The solution of the Qi-space-time wave equation,that is,the coherence coefficient,is an important factor in superconductivity.In addition,the conditions under which tornadoes form are also an important basis for superconductivity.Finally,it is emphasized that the coherence coefficient and prevention of dark energy emission are the two most important elements for preparing superconducting materials.展开更多
The intramolecular electronic communication and multilevel ion-pairing effect of triferrocenylmethane(TriFcM) in organic phase was studied with the "thin-layer electrochemistry" approach.Three pairs of symmetric p...The intramolecular electronic communication and multilevel ion-pairing effect of triferrocenylmethane(TriFcM) in organic phase was studied with the "thin-layer electrochemistry" approach.Three pairs of symmetric peaks in cyclic voltammetry of TriFcM correspond to three one-electron electrochemical reaction processes and indicate strong intramolecular electronic communication,which could be used to study the multilevel ion-pairing effect.Three different formation constants of ion-pairs between the three ferroceniums of TriFcM and perchlorate in thin organic film were obtained and compared.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11725417 and 11575027)NSAF(Grant No.U1730449)the Science Challenge Project(Grant No.TZ2018005)
文摘The dynamical effects on electron-positron pair creation from a vacuum caused by the switching processes of a super- critical well potential are investigated in detail. The results show that only when the switching on and switching off time both increase will the final pair yield converge to the integer of embedded bound states nearly exponentially. But a single adiabatic switching on or switching off cannot lead to an integer pair yield. If the potential is turned on abruptly, associated with the discrete and embedded bound states, there is multi-frequency oscillation around the pair number's saturation. The slowly switching on can suppress the amplitude of this oscillation and reduce the final pair yield. The switching off can also reduce the final pair number in the same order of magnitude. The evolution of a single-pair number shows a robust long range correlation between particle and antiparticle. For an adiabatic switching case, the single-pair dominates the early pair creation, their upper limit value is equal to the integer, and these single-pairs will totally disentangle during the switching off.
文摘We analyze the line data from solar flares to present evidence for the emission spectrum of the recently discussed electron-proton pairs at high temperatures. We also point out that since the pairing phenomenon provides an additional source for these lines—the conventional source being the highly ionized high-Z atoms already existing in the solar atmosphere, we have a plausible explanation of the FIP effect.
文摘The space-time ladder theory reveals that the formation of electronic tornadoes,or the formation of electronic dissipative structures,to be precise,the enhancement of electronic Energy Qi field is the basis of superconductivity.The surrounding area of the electronic tornado is expanding,which is the basis of the Meissner effect,and the center is contracting,which is the basis of the pinning force.When the attractive force of the Energy Qi field is greater than the Coulomb repulsive force,the electrons form a Cooper pair and release dark energy into virtual space-time.When the dark energy increases to a certain extent,the virtual space-time frees the Cooper pair and forms an electron-virtual space-time wave,which fluctuates freely in the superconducting material,which is the basis for the superconducting resistance to be zero.This is similar to the principle of a hot air balloon.The virtual space-time is hot air and the electron pair is a hot air balloon device.Conductor electrons are free and easy to emit dark energy,resulting in insufficient dark energy,and it is not easy to form electron-pair virtual space-time waves,so the superconducting critical temperature is very low.This is because the emission coefficient of the conductor is too high.Insulator electrons are not easy to emit dark energy and easily form electron-pair virtual space-time waves.Therefore,the superconducting critical temperature is slightly higher because of the low emission coefficient of the insulator.The solution of the Qi-space-time wave equation,that is,the coherence coefficient,is an important factor in superconductivity.In addition,the conditions under which tornadoes form are also an important basis for superconductivity.Finally,it is emphasized that the coherence coefficient and prevention of dark energy emission are the two most important elements for preparing superconducting materials.
基金the NSFC(No.21173023)the 111 Project(No.B07012) in China and the TriFcM provided from professor Hua-Zhong Yu at Simon Fraser University in Canada
文摘The intramolecular electronic communication and multilevel ion-pairing effect of triferrocenylmethane(TriFcM) in organic phase was studied with the "thin-layer electrochemistry" approach.Three pairs of symmetric peaks in cyclic voltammetry of TriFcM correspond to three one-electron electrochemical reaction processes and indicate strong intramolecular electronic communication,which could be used to study the multilevel ion-pairing effect.Three different formation constants of ion-pairs between the three ferroceniums of TriFcM and perchlorate in thin organic film were obtained and compared.