This paper deals with the solution of a parametric equation with generalized boundary condiiton in transport theory. It gives the distribution of parameter (so called delta-eigenvalue [1]) with which the equation has ...This paper deals with the solution of a parametric equation with generalized boundary condiiton in transport theory. It gives the distribution of parameter (so called delta-eigenvalue [1]) with which the equation has non-zero solution. A necessary and sufficient condition for the existence of; he control critical eigenvalue delta0 is established.展开更多
In 1976, Ronen et al. raised the question of how to solve the new integrodifferential parameter equation with transport theory. So far there have only been some approximate calculations and numerical analyses about th...In 1976, Ronen et al. raised the question of how to solve the new integrodifferential parameter equation with transport theory. So far there have only been some approximate calculations and numerical analyses about this question. Using functional analysis, this note discusses this question in a strict mathematical way, gives the parameter distribution in L^p space (1≤p≤+∞) with which the展开更多
基金Project supported by the National Natural Science Foundation of China.
文摘This paper deals with the solution of a parametric equation with generalized boundary condiiton in transport theory. It gives the distribution of parameter (so called delta-eigenvalue [1]) with which the equation has non-zero solution. A necessary and sufficient condition for the existence of; he control critical eigenvalue delta0 is established.
文摘In 1976, Ronen et al. raised the question of how to solve the new integrodifferential parameter equation with transport theory. So far there have only been some approximate calculations and numerical analyses about this question. Using functional analysis, this note discusses this question in a strict mathematical way, gives the parameter distribution in L^p space (1≤p≤+∞) with which the