This paper extends the two-grid discretization scheme of the conforming finite elements proposed by Xu and Zhou (Math. Comput., 70 (2001), pp.17-25) to the nonconforming finite elements for eigenvalue problems. In...This paper extends the two-grid discretization scheme of the conforming finite elements proposed by Xu and Zhou (Math. Comput., 70 (2001), pp.17-25) to the nonconforming finite elements for eigenvalue problems. In particular, two two-grid discretization schemes based on Rayleigh quotient technique are proposed. By using these new schemes, the solution of an eigenvalue problem on a fine mesh is reduced to that on a much coarser mesh together with the solution of a linear algebraic system on the fine mesh. The resulting solution still maintains an asymptotically optimal accuracy. Comparing with the two-grid discretization scheme of the conforming finite elements, the main advantages of our new schemes are twofold when the mesh size is small enough. First, the lower bounds of the exact eigenvalues in our two-grid discretization schemes can be obtained. Second, the first eigenvalue given by the new schemes has much better accuracy than that obtained by solving the eigenvalue problems on the fine mesh directly.展开更多
This study discusses generalized Rayleigh quotient and high efficiency finite element discretization schemes. Some results are as follows: 1) Rayleigh quotient accelerate technique is extended to nonselfadjoint proble...This study discusses generalized Rayleigh quotient and high efficiency finite element discretization schemes. Some results are as follows: 1) Rayleigh quotient accelerate technique is extended to nonselfadjoint problems. Generalized Rayleigh quotients of operator form and weak form are defined and the basic relationship between approximate eigenfunction and its generalized Rayleigh quotient is established. 2) New error estimates are obtained by replacing the ascent of exact eigenvalue with the ascent of finite element approximate eigenvalue. 3) Based on the work of Xu Jinchao and Zhou Aihui, finite element two-grid discretization schemes are established to solve nonselfadjoint elliptic differential operator eigenvalue problems and these schemes are used in both conforming finite element and non-conforming finite element. Besides, the efficiency of the schemes is proved by both theoretical analysis and numerical experiments. 4) Iterated Galerkin method, interpolated correction method and gradient recovery for selfadjoint elliptic differential operator eigenvalue problems are extended to nonselfadjoint elliptic differential operator eigenvalue problems.展开更多
A two-grid finite element method with L1 scheme is presented for solving two-dimen-sional time-fractional nonlinear Schrodinger equation.The finite element solution in the L-norm are proved bounded without any time-st...A two-grid finite element method with L1 scheme is presented for solving two-dimen-sional time-fractional nonlinear Schrodinger equation.The finite element solution in the L-norm are proved bounded without any time-step size conditions(dependent on spatial-step size).The classical L1 scheme is considered in the time direction,and the two-grid finite element method is applied in spatial direction.The optimal order error estimations of the two-grid solution in the LP-norm is proved without any time-step size conditions.It is shown,both theoretically and numerically,that the coarse space can be extremely coarse,with no loss in the order of accuracy.展开更多
In this paper,we develop a two-grid method(TGM)based on the FEM for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations.A two-grid algorithm is proposed for solving the nonlinear sys...In this paper,we develop a two-grid method(TGM)based on the FEM for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations.A two-grid algorithm is proposed for solving the nonlinear system,which consists of two steps:a nonlinear FE system is solved on a coarse grid,then the linearized FE system is solved on the fine grid by Newton iteration based on the coarse solution.The fully discrete numerical approximation is analyzed,where the Galerkin finite element method for the space derivatives and the finite difference scheme for the time Caputo derivative with orderα∈(1,2)andα1∈(0,1).Numerical stability and optimal error estimate O(h^(r+1)+H^(2r+2)+τ^(min{3−α,2−α1}))in L^(2)-norm are presented for two-grid scheme,where t,H and h are the time step size,coarse grid mesh size and fine grid mesh size,respectively.Finally,numerical experiments are provided to confirm our theoretical results and effectiveness of the proposed algorithm.展开更多
In this paper,we present an efficient method of two-grid scheme for the approximation of two-dimensional nonlinear parabolic equations using an expanded mixed finite element method.We use two Newton iterations on the ...In this paper,we present an efficient method of two-grid scheme for the approximation of two-dimensional nonlinear parabolic equations using an expanded mixed finite element method.We use two Newton iterations on the fine grid in our methods.Firstly,we solve an original nonlinear problem on the coarse nonlinear grid,then we use Newton iterations on the fine grid twice.The two-grid idea is from Xu's work[SIAM J.Numer.Anal.,33(1996),pp.1759–1777]on standard finite method.We also obtain the error estimates for the algorithms of the two-grid method.It is shown that the algorithm achieve asymptotically optimal approximation rate with the two-grid methods as long as the mesh sizes satisfy h=O(H^((4k+1)/(k+1))).展开更多
In this paper,we construct a Crank-Nicolson finite volume element scheme and a two-grid decoupling algorithm for solving the time-dependent Schr¨odinger equation.Combining the idea of two-grid discretization,the ...In this paper,we construct a Crank-Nicolson finite volume element scheme and a two-grid decoupling algorithm for solving the time-dependent Schr¨odinger equation.Combining the idea of two-grid discretization,the decoupling algorithm involves solving a small coupling system on a coarse grid space and a decoupling system with two independent Poisson problems on a fine grid space,which can ensure the accuracy while the size of coarse grid is much coarser than that of fine grid.We further provide the optimal error estimate of these two schemes rigorously by using elliptic projection operator.Finally,numerical simulations are provided to verify the correctness of the theoretical analysis.展开更多
Two-grid mixed finite element method is proposed based on backward guler schemes for the unsteady reaction-diffusion equations. The scheme combines with the stabilized mixed finite element scheme by using the lowest e...Two-grid mixed finite element method is proposed based on backward guler schemes for the unsteady reaction-diffusion equations. The scheme combines with the stabilized mixed finite element scheme by using the lowest equal-order pairs for the velocity and pressure. The space twogrid method is also used to reduce the time consuming. The benefits of this approach are to avoid the higher derivative, but to have more favorable stability, and to get the numerical solution of the two unknown variables simultaneously. Stability analysis and error estimates are given in this work. Finally, the theoretical results are verified by the numerical examples.展开更多
基金supported by National Natural Science Foundation of China (No. 10761003)by the Foundation of Guizhou Province Scientific Research for Senior Personnel, China
文摘This paper extends the two-grid discretization scheme of the conforming finite elements proposed by Xu and Zhou (Math. Comput., 70 (2001), pp.17-25) to the nonconforming finite elements for eigenvalue problems. In particular, two two-grid discretization schemes based on Rayleigh quotient technique are proposed. By using these new schemes, the solution of an eigenvalue problem on a fine mesh is reduced to that on a much coarser mesh together with the solution of a linear algebraic system on the fine mesh. The resulting solution still maintains an asymptotically optimal accuracy. Comparing with the two-grid discretization scheme of the conforming finite elements, the main advantages of our new schemes are twofold when the mesh size is small enough. First, the lower bounds of the exact eigenvalues in our two-grid discretization schemes can be obtained. Second, the first eigenvalue given by the new schemes has much better accuracy than that obtained by solving the eigenvalue problems on the fine mesh directly.
基金supported by National Natural Science Foundation of China (Grant No.10761003) the Governor's Special Foundation of Guizhou Province for Outstanding Scientific Education Personnel (Grant No.[2005]155)
文摘This study discusses generalized Rayleigh quotient and high efficiency finite element discretization schemes. Some results are as follows: 1) Rayleigh quotient accelerate technique is extended to nonselfadjoint problems. Generalized Rayleigh quotients of operator form and weak form are defined and the basic relationship between approximate eigenfunction and its generalized Rayleigh quotient is established. 2) New error estimates are obtained by replacing the ascent of exact eigenvalue with the ascent of finite element approximate eigenvalue. 3) Based on the work of Xu Jinchao and Zhou Aihui, finite element two-grid discretization schemes are established to solve nonselfadjoint elliptic differential operator eigenvalue problems and these schemes are used in both conforming finite element and non-conforming finite element. Besides, the efficiency of the schemes is proved by both theoretical analysis and numerical experiments. 4) Iterated Galerkin method, interpolated correction method and gradient recovery for selfadjoint elliptic differential operator eigenvalue problems are extended to nonselfadjoint elliptic differential operator eigenvalue problems.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.11931003)by the National Natural Science Foundation of China(Grant Nos.41974133,12271233)+1 种基金The work of first author was supported by the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2024A1515012430,2020A1515011032)by the Educational Commission of Guangdong Province,China(Grant No.2019KTSCX174).
文摘A two-grid finite element method with L1 scheme is presented for solving two-dimen-sional time-fractional nonlinear Schrodinger equation.The finite element solution in the L-norm are proved bounded without any time-step size conditions(dependent on spatial-step size).The classical L1 scheme is considered in the time direction,and the two-grid finite element method is applied in spatial direction.The optimal order error estimations of the two-grid solution in the LP-norm is proved without any time-step size conditions.It is shown,both theoretically and numerically,that the coarse space can be extremely coarse,with no loss in the order of accuracy.
基金This work is supported by the State Key Program of National Natural Science Foundation of China(11931003)National Natural Science Foundation of China(41974133,11971410)+2 种基金Project for Hunan National Applied Mathematics Center of Hunan Provincial Science and Technology Department(2020ZYT003)Hunan Provincial Innovation Foundation for Postgraduate,China(XDCX2020B082,XDCX2021B098)Postgraduate Scientific Research Innovation Project of Hunan Province(CX20210597).
文摘In this paper,we develop a two-grid method(TGM)based on the FEM for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations.A two-grid algorithm is proposed for solving the nonlinear system,which consists of two steps:a nonlinear FE system is solved on a coarse grid,then the linearized FE system is solved on the fine grid by Newton iteration based on the coarse solution.The fully discrete numerical approximation is analyzed,where the Galerkin finite element method for the space derivatives and the finite difference scheme for the time Caputo derivative with orderα∈(1,2)andα1∈(0,1).Numerical stability and optimal error estimate O(h^(r+1)+H^(2r+2)+τ^(min{3−α,2−α1}))in L^(2)-norm are presented for two-grid scheme,where t,H and h are the time step size,coarse grid mesh size and fine grid mesh size,respectively.Finally,numerical experiments are provided to confirm our theoretical results and effectiveness of the proposed algorithm.
基金supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China 10971074+1 种基金the National Basic Research Program under the Grant 2005CB321703Hunan Provincial Innovation Foundation For Postgraduate CX2009B119。
文摘In this paper,we present an efficient method of two-grid scheme for the approximation of two-dimensional nonlinear parabolic equations using an expanded mixed finite element method.We use two Newton iterations on the fine grid in our methods.Firstly,we solve an original nonlinear problem on the coarse nonlinear grid,then we use Newton iterations on the fine grid twice.The two-grid idea is from Xu's work[SIAM J.Numer.Anal.,33(1996),pp.1759–1777]on standard finite method.We also obtain the error estimates for the algorithms of the two-grid method.It is shown that the algorithm achieve asymptotically optimal approximation rate with the two-grid methods as long as the mesh sizes satisfy h=O(H^((4k+1)/(k+1))).
基金the helpful suggestions.This work was supported by National Natural Science Foundation of China(Nos.11771375,11971152)Shandong Province Natural Science Foundation(No.ZR2018MA008)NSF of Henan Province(No.202300410167).
文摘In this paper,we construct a Crank-Nicolson finite volume element scheme and a two-grid decoupling algorithm for solving the time-dependent Schr¨odinger equation.Combining the idea of two-grid discretization,the decoupling algorithm involves solving a small coupling system on a coarse grid space and a decoupling system with two independent Poisson problems on a fine grid space,which can ensure the accuracy while the size of coarse grid is much coarser than that of fine grid.We further provide the optimal error estimate of these two schemes rigorously by using elliptic projection operator.Finally,numerical simulations are provided to verify the correctness of the theoretical analysis.
基金Acknowledgements This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11401422, 11172194), the Provincial Soft Science Foundation of Shaanxi Province (No. 2014041007), and Provincial Science Foundation of Shanxi (Nos. 2014011005, 2015011001).
文摘Two-grid mixed finite element method is proposed based on backward guler schemes for the unsteady reaction-diffusion equations. The scheme combines with the stabilized mixed finite element scheme by using the lowest equal-order pairs for the velocity and pressure. The space twogrid method is also used to reduce the time consuming. The benefits of this approach are to avoid the higher derivative, but to have more favorable stability, and to get the numerical solution of the two unknown variables simultaneously. Stability analysis and error estimates are given in this work. Finally, the theoretical results are verified by the numerical examples.