The eftects of various types of waves on vertical plane turbulent jets are studied numerically in the paper. A ttn'ee- dimensional numerical model in a-coordinate is developed to study these problems by use of large ...The eftects of various types of waves on vertical plane turbulent jets are studied numerically in the paper. A ttn'ee- dimensional numerical model in a-coordinate is developed to study these problems by use of large eddy simulation method. Turbulence is modeled by a dynamic coherent eddy model. Numerical results including the distribution of veloci- ty, the decay law of the mean velocity along axis, the turbulent Reynolds stresses and the volume flux per unit width without wave, in the first-order Stokes waves, in the second-order Stokes waves, in the fifth-order Stokes waves, in the solitary waves and in random waves are compared and analyzed. A focus on coherent structures, probability density func- tions and correlation functions of jets is also investigated. The numerical results are of great theoretical importance for un- derstanding jet turbulent behaviors in different types of waves.展开更多
基金supported by the National Key Technology R&D Program of China ( Grant No.2008BAB29B09)the Ph. D. Programs Foundation of the Ministry of Education of China ( Grant No.20070294012)+1 种基金the National Science Fund for Distinguished Young Scholars ( Grant No. 50925932)the"Qinglan Project" of Jiangsu Province and Outstanding Doctoral Dissertation Incubation Program of Hohai University(Grant No.2010B18814)
文摘The eftects of various types of waves on vertical plane turbulent jets are studied numerically in the paper. A ttn'ee- dimensional numerical model in a-coordinate is developed to study these problems by use of large eddy simulation method. Turbulence is modeled by a dynamic coherent eddy model. Numerical results including the distribution of veloci- ty, the decay law of the mean velocity along axis, the turbulent Reynolds stresses and the volume flux per unit width without wave, in the first-order Stokes waves, in the second-order Stokes waves, in the fifth-order Stokes waves, in the solitary waves and in random waves are compared and analyzed. A focus on coherent structures, probability density func- tions and correlation functions of jets is also investigated. The numerical results are of great theoretical importance for un- derstanding jet turbulent behaviors in different types of waves.