In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned o...In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.展开更多
Extracting geothermal energy from the oil-producing fields is an experimental venture globally.The exploitation and utilization of geothermal energy can partly reduce the larger dependence on conventional non-renewabl...Extracting geothermal energy from the oil-producing fields is an experimental venture globally.The exploitation and utilization of geothermal energy can partly reduce the larger dependence on conventional non-renewable energy sources like oil,gas,coal,and other fossil fuels,and has a bright prospect.The Upper Assam Basin is a mature petroliferous basin of NE India,where there are several hundred low production,high water cut,or abandoned oil and gas wells that can be retrofitted as geothermal wells instead of drilling new ones.This will help bridge the gap of growing energy demand and limited supply in energy-deficient state like Assam.Situated away from the active plate boundaries and in lack of active volcanism,the Upper Assam Basin remains a low-to-medium enthalpy geothermal fluid regime.The deeper reservoir in this regard can,therefore,be the best candidate for the introspection of the potential geothermal energy reservoir reconnaissance.The selection of a deeper horizon considered in the present case has been the stratified reservoirs of the Lakadong-Therria(Lk-Th)Formation,Sylhet Group of the Lower Eocene age occurring at a variable depth of 3400 me 4600 m.The Lk-Th Formation possesses a fair-quality reservoir with lateral continuity and favourable petrophysical properties.In this study,representative gamma-ray(GR)and resistivity(R)logs were examined to work out lithology,and bed boundary demarcation,etc.The total Formation thickness varies from 97 to 157 m;the individual sand body thickness is up to 6 m.Other reservoir parameters,e.g.,porosity(φ=8-33%),water saturation(S_(w)=4.57-95.15%),geothermal gradient(2.71℃/100m to 3.92 C/100 m at 4300 m and 3608 m)respectively,and theoretical estimate of high heat flux in the range 70e100 mW/m^(2)/s,are the necessary yard-stick to measure the subsurface geothermal reserves.Efficient energy extraction will have the potential in facilitating energy utilization for industrial purposes,especially in tea processing units present nearby oilfields and also for power generation by the binary mechanism.展开更多
文摘In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.
文摘Extracting geothermal energy from the oil-producing fields is an experimental venture globally.The exploitation and utilization of geothermal energy can partly reduce the larger dependence on conventional non-renewable energy sources like oil,gas,coal,and other fossil fuels,and has a bright prospect.The Upper Assam Basin is a mature petroliferous basin of NE India,where there are several hundred low production,high water cut,or abandoned oil and gas wells that can be retrofitted as geothermal wells instead of drilling new ones.This will help bridge the gap of growing energy demand and limited supply in energy-deficient state like Assam.Situated away from the active plate boundaries and in lack of active volcanism,the Upper Assam Basin remains a low-to-medium enthalpy geothermal fluid regime.The deeper reservoir in this regard can,therefore,be the best candidate for the introspection of the potential geothermal energy reservoir reconnaissance.The selection of a deeper horizon considered in the present case has been the stratified reservoirs of the Lakadong-Therria(Lk-Th)Formation,Sylhet Group of the Lower Eocene age occurring at a variable depth of 3400 me 4600 m.The Lk-Th Formation possesses a fair-quality reservoir with lateral continuity and favourable petrophysical properties.In this study,representative gamma-ray(GR)and resistivity(R)logs were examined to work out lithology,and bed boundary demarcation,etc.The total Formation thickness varies from 97 to 157 m;the individual sand body thickness is up to 6 m.Other reservoir parameters,e.g.,porosity(φ=8-33%),water saturation(S_(w)=4.57-95.15%),geothermal gradient(2.71℃/100m to 3.92 C/100 m at 4300 m and 3608 m)respectively,and theoretical estimate of high heat flux in the range 70e100 mW/m^(2)/s,are the necessary yard-stick to measure the subsurface geothermal reserves.Efficient energy extraction will have the potential in facilitating energy utilization for industrial purposes,especially in tea processing units present nearby oilfields and also for power generation by the binary mechanism.