Modified refractivity (M) profile is an important parameter to describe the atmospheric refraction environment,as well as a key factor in uniquely evaluating electromagnetic propagation effects.In order to improve the...Modified refractivity (M) profile is an important parameter to describe the atmospheric refraction environment,as well as a key factor in uniquely evaluating electromagnetic propagation effects.In order to improve the model-derived M profile in stable (especially very stable) conditions,three nonlinear similarity functions,namely BH91,CB05,SHEBA07,are introduced in this paper to improve the original Babin_V25 model,and the performances of these modified models are verified based on the hydrometeorological observations from tower platforms,which are finally compared with the original Babin_V25 model and Local_HYQ92 model.Results show that introducing nonlinear similarity functions can significantly improve the model-derived M profile;especially,the newly developed SHEBA07 functions manage to reduce the predicted root mean square (rms) differences of M and M slope (for both 0-5m and 5-40m) by 64.5%,16.6%,and 60.4%,respectively in stable conditions.Unfortunately,this improved method reacts little on the evaporation duct height;in contrast,Local_HYQ92 model is capable of reducing the predicted rms differences of M,M slope (for both 0-5m and 5-40m),and evaporation duct height by 76.7%,40.2%,83.7%,and 58.0% respectively.Finally,a new recommendation is made to apply Local_HYQ92 and Babin_SHEBA07 in very stable conditions considering that M slope is more important than evaporation duct height and absolute M value in uniquely determining electromagnetic propagation effects.展开更多
A new mechanics formula of caprock’s capillary sealing ability has been established in this paper, in which the boundary layer resistance was considered and characterized by starting pressure gradient. The formula sh...A new mechanics formula of caprock’s capillary sealing ability has been established in this paper, in which the boundary layer resistance was considered and characterized by starting pressure gradient. The formula shows that capillary sealing ability of caprock is determined not only by the capillary force of rock and the buoyancy of hydrocarbon column, but also by the starting pressure gradient of hydrocarbons and the thickness of caprock. The buoyancy of hydrocarbon column, the starting pressure gradient of hydrocarbon, and the capillary force of caprock are affected by hydrocarbon density, hydrocarbon viscosity, and hydrocarbon-water interface tension respectively. Based on hydrocarbon property data of reservoirs of Jiyang Depression and equations from literature, the effects of hydrocarbon density, hydrocarbon viscosity, and hydrocarbon-water interface tension on the sealing ability of caprock are analyzed. Under formational conditions, the sealing ability of oil caprock can vary up to dozens times because of the variations of the oil density, oil viscosity, and oil-water interface tension. Thus, the physical characters of hydrocarbon should be considered when evaluating the capillary sealing ability of caprocks. Study of the effects of physical characters on sealing ability of caprock can provide guidance to exploring special physical property hydrocarbon resources, such as viscous oils, and hydrocarbon resources in special pressure-temperature environments.展开更多
Transverse pressure gradient(TPG)is one of the key factors influencing the boundary layer airflow diversion in a bump inlet.This paper proposes a novel TPG-based hypersonic bump inlet design method.This method consist...Transverse pressure gradient(TPG)is one of the key factors influencing the boundary layer airflow diversion in a bump inlet.This paper proposes a novel TPG-based hypersonic bump inlet design method.This method consists of two steps.First,a parametric optimization approach is employed to design a series of 2D inlets with various compression efficiencies.Then,according to the prescribed TPG,the optimized inlets are placed in different osculating planes to generate a 3D bump inlet.This method provides a means to directly control the aerodynamic parameters of the bump rather than the geometric parameters.By performing this method to a hypersonic chin inlet,a long and wide bump surface is formed in the compression wall,which leads to good integration of the bump/inlet.Results show that a part of the near-wall boundary layer flow is diverted by the bump,resulting in a slight decrease in the mass flow but a significant improvement in the total pressure recovery.In addition,the starting ability is significantly improved by adding the bump surface.Analysis reveals that the bump has a 3D rebuilding effect on the large-scale separation bubble of the unstarted inlet.Finally,a mass flow correction is performed on the designed bump inlet to increase the mass flow to full airflow capture.The results show that the mass flow rate of the corrected bump inlet reaches up to 0.9993,demonstrating that the correction method is effective.展开更多
基金Key project of the National Natural Science Foundation of China(4083095841005029)the "973" National Basis Research and Development Program of China (2009CB421502)
文摘Modified refractivity (M) profile is an important parameter to describe the atmospheric refraction environment,as well as a key factor in uniquely evaluating electromagnetic propagation effects.In order to improve the model-derived M profile in stable (especially very stable) conditions,three nonlinear similarity functions,namely BH91,CB05,SHEBA07,are introduced in this paper to improve the original Babin_V25 model,and the performances of these modified models are verified based on the hydrometeorological observations from tower platforms,which are finally compared with the original Babin_V25 model and Local_HYQ92 model.Results show that introducing nonlinear similarity functions can significantly improve the model-derived M profile;especially,the newly developed SHEBA07 functions manage to reduce the predicted root mean square (rms) differences of M and M slope (for both 0-5m and 5-40m) by 64.5%,16.6%,and 60.4%,respectively in stable conditions.Unfortunately,this improved method reacts little on the evaporation duct height;in contrast,Local_HYQ92 model is capable of reducing the predicted rms differences of M,M slope (for both 0-5m and 5-40m),and evaporation duct height by 76.7%,40.2%,83.7%,and 58.0% respectively.Finally,a new recommendation is made to apply Local_HYQ92 and Babin_SHEBA07 in very stable conditions considering that M slope is more important than evaporation duct height and absolute M value in uniquely determining electromagnetic propagation effects.
基金supported by the Science & Technology Project of Sinopec (Grant No. P05070)
文摘A new mechanics formula of caprock’s capillary sealing ability has been established in this paper, in which the boundary layer resistance was considered and characterized by starting pressure gradient. The formula shows that capillary sealing ability of caprock is determined not only by the capillary force of rock and the buoyancy of hydrocarbon column, but also by the starting pressure gradient of hydrocarbons and the thickness of caprock. The buoyancy of hydrocarbon column, the starting pressure gradient of hydrocarbon, and the capillary force of caprock are affected by hydrocarbon density, hydrocarbon viscosity, and hydrocarbon-water interface tension respectively. Based on hydrocarbon property data of reservoirs of Jiyang Depression and equations from literature, the effects of hydrocarbon density, hydrocarbon viscosity, and hydrocarbon-water interface tension on the sealing ability of caprock are analyzed. Under formational conditions, the sealing ability of oil caprock can vary up to dozens times because of the variations of the oil density, oil viscosity, and oil-water interface tension. Thus, the physical characters of hydrocarbon should be considered when evaluating the capillary sealing ability of caprocks. Study of the effects of physical characters on sealing ability of caprock can provide guidance to exploring special physical property hydrocarbon resources, such as viscous oils, and hydrocarbon resources in special pressure-temperature environments.
基金the National Natural Science Foundation of China(No.12102470)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20200082),China。
文摘Transverse pressure gradient(TPG)is one of the key factors influencing the boundary layer airflow diversion in a bump inlet.This paper proposes a novel TPG-based hypersonic bump inlet design method.This method consists of two steps.First,a parametric optimization approach is employed to design a series of 2D inlets with various compression efficiencies.Then,according to the prescribed TPG,the optimized inlets are placed in different osculating planes to generate a 3D bump inlet.This method provides a means to directly control the aerodynamic parameters of the bump rather than the geometric parameters.By performing this method to a hypersonic chin inlet,a long and wide bump surface is formed in the compression wall,which leads to good integration of the bump/inlet.Results show that a part of the near-wall boundary layer flow is diverted by the bump,resulting in a slight decrease in the mass flow but a significant improvement in the total pressure recovery.In addition,the starting ability is significantly improved by adding the bump surface.Analysis reveals that the bump has a 3D rebuilding effect on the large-scale separation bubble of the unstarted inlet.Finally,a mass flow correction is performed on the designed bump inlet to increase the mass flow to full airflow capture.The results show that the mass flow rate of the corrected bump inlet reaches up to 0.9993,demonstrating that the correction method is effective.