Neurodegenerative diseases(NDs)include more than 600 disease entities that are characterized by loss of specific neurons located in anatomically related functional areas which progressively lead to motor and cogniti...Neurodegenerative diseases(NDs)include more than 600 disease entities that are characterized by loss of specific neurons located in anatomically related functional areas which progressively lead to motor and cognitive deficits.The pathogenesis of NDs involves mitochondrial dysfunction/oxidative stress,programmed cell death or abnormal protein aggregation,trafficking,and/or degradation.In most cases,展开更多
The nucleocapsid protein(NP)plays a crucial role in SARS-CoV-2 replication and is the most abundant structural protein with a long half-life.Despite its vital role in severe acute respiratory syndrome coronavirus 2(SA...The nucleocapsid protein(NP)plays a crucial role in SARS-CoV-2 replication and is the most abundant structural protein with a long half-life.Despite its vital role in severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)assembly and host inflammatory response,it remains an unexplored target for drug development.In this study,we identified a small-molecule compound(ciclopirox)that promotes NP degradation using an FDA-approved library and a drug-screening cell model.Ciclopirox significantly inhibited SARS-CoV-2 replication both in vitro and in vivo by inducing NP degradation.Ciclopirox induced abnormal NP aggregation through indirect interaction,leading to the formation of condensates with higher viscosity and lower mobility.These condensates were subsequently degraded via the autophagy-lysosomal pathway,ultimately resulting in a shortened NP half-life and reduced NP expression.Our results suggest that NP is a potential drug target,and that ciclopirox holds substantial promise for further development to combat SARS-CoV-2 replication.展开更多
基金supported by Ministero dell’Istruzione,dell’Università e della Ricerca of Italy (PRIN 20109MXHMR_001)Associazione Italiana Ricerca sul Cancro (AIRC,IG#15221)
文摘Neurodegenerative diseases(NDs)include more than 600 disease entities that are characterized by loss of specific neurons located in anatomically related functional areas which progressively lead to motor and cognitive deficits.The pathogenesis of NDs involves mitochondrial dysfunction/oxidative stress,programmed cell death or abnormal protein aggregation,trafficking,and/or degradation.In most cases,
基金supported by grants from Shenzhen Science and Technology Program(Grant No.JCYJ20220530163206015,China)National Key Research and Development Program of China(Grant No.2021YFA0910900)+4 种基金Shenzhen Science and Technology Program(Grant No.JCYJ20220818103017036,China)the National Science Fund for Distinguished Young Scholars(Grant No.82025022,China)Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515110033,China)Guangdong Science and Technology Plan Project,construction of high-level biosafety laboratories(Grant No.2021B1212030010,China)Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515110033,China).
文摘The nucleocapsid protein(NP)plays a crucial role in SARS-CoV-2 replication and is the most abundant structural protein with a long half-life.Despite its vital role in severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)assembly and host inflammatory response,it remains an unexplored target for drug development.In this study,we identified a small-molecule compound(ciclopirox)that promotes NP degradation using an FDA-approved library and a drug-screening cell model.Ciclopirox significantly inhibited SARS-CoV-2 replication both in vitro and in vivo by inducing NP degradation.Ciclopirox induced abnormal NP aggregation through indirect interaction,leading to the formation of condensates with higher viscosity and lower mobility.These condensates were subsequently degraded via the autophagy-lysosomal pathway,ultimately resulting in a shortened NP half-life and reduced NP expression.Our results suggest that NP is a potential drug target,and that ciclopirox holds substantial promise for further development to combat SARS-CoV-2 replication.