The grassland in the Hindu Kush Himalayan(HKH) region is one of the large st and most biodiverse mountain grassland types in the world,and its ecosystem service functions have profound impacts on the sustainable devel...The grassland in the Hindu Kush Himalayan(HKH) region is one of the large st and most biodiverse mountain grassland types in the world,and its ecosystem service functions have profound impacts on the sustainable development of the HKH region.Monitoring the spatiotemporal distribution of grassland aboveground biomass(AGB) accurately and quantifying its response to climate change are indispensable sources of information for sustainably managing grassland ecosystems in the HKH region.In this study,a pure vegetation index model(PVIM) was applied to estimate the long-term dynamics of grassland AGB in the HKH region during 2000-2018.We further quantified the response of grassland AGB to climate change(temperature and precipitation) by partial correlation and variance partitioning analyses and then compared their differences with elevation.Our results demonstrated that the grassland AGB predicted by the PVIM had a good linear relationship with the ground sampling data.The grassland AGB distribution pattern showed a decreasing trend from east to west across the HKH region except in the southern Himalayas.From 2000 to 2018,the mean AGB of the HKH region increased at a rate of 1.57 g/(m~2·yr) and ranged from 252.9(2000) to 307.8 g/m~2(2018).AGB had a positive correlation with precipitation in more than 80% of the grassland,and temperature was positively correlated with AGB in approximately half of the region.The change in grassland AGB was more responsive to the cumulative effect of annual precipitation,while it was more sensitive to the change in temperature in the growing season;in addition,the influence of climate varied at different elevations.Moreover,compared with that of temperature,the contribution of precipitation to grassland AGB change was greater in approximately 60% of the grassland,but the differences in the contribution for each climate factor were small between the two temporal scales at elevations over 2000 m.An accurate assessment of the temporal and spatial distributions of grassland AGB and the quantification of its response to climate change are of great significance for grassland management and sustainable development in the HKH region.展开更多
Herbaceous marsh is the most widely distributed type of marsh wetland ecosystem,and has important ecological functions such as water conservation,climate regulation,carbon storage and fixation,and sheltering rare spec...Herbaceous marsh is the most widely distributed type of marsh wetland ecosystem,and has important ecological functions such as water conservation,climate regulation,carbon storage and fixation,and sheltering rare species.The carbon sequestration function of herbaceous marsh plays a key role in slowing climate warming and maintaining regional environmental stability.Vegetation biomass is an important index reflecting the carbon sequestration capacity of wetlands.Investigating the biomass of marsh vegetation can provide a scientific basis for estimating the carbon storage and carbon sequestration capacity of marshes.Based on field survey data of aboveground biomass of herbaceous marsh vegetation and the distribution data set of marsh in China,we analyzed the aboveground biomass and its spatial distribution pattern of herbaceous marsh on a national scale for the first time.The results showed that in China the total area of herbaceous marsh was 9.7×10^(4) km^(2),the average density of aboveground biomass of herbaceous marsh vegetation was 227.5±23.0 g C m-2(95%confidence interval,the same below),and the total aboveground biomass was 22.2±2.2 Tg C(1 Tg=1012 g).The aboveground biomass density of herbaceous marsh vegetation is generally low in Northeast China and the Tibetan Plateau,and high in central North China and coastal regions in China.In different marsh distribution regions of China,the average biomass density of herbaceous marsh vegetation from small to large was as follows:temperate humid and semi-humid marsh region(182.3±49.3 g C m^(-2))<Tibetan Plateau marsh region(243.9±26.6 g C m-2)<temperate arid and semi-arid marsh region(300.5±73.2 g C m-2)<subtropical humid marsh region(348.4±59.0 g C m-2)<coastal marsh region(675.4±73.8 g C m-2). Due to the different area of herbaceous marsh, the total aboveground biomass of herbaceous marsh vegetation in different marsh distribution regions was the largest in the temperate humid and semi-humid marsh region(9.6±2.6 Tg C), and was the smallest in the coastal marsh region(1.1±0.1 Tg C). The spatial distribution of aboveground biomass of herbaceous marsh vegetation in China has obvious non-zonality characteristics, but also presents certain zonality in some regions. The aboveground biomass of herbaceous marsh vegetation in the Tibetan Plateau decreased with the increase of altitude. With the aggravation of drought, the aboveground biomass of herbaceous marsh vegetation in temperate humid and semi-humid regions and temperate arid and semi-arid regions decreased first and then did not obviously change. The aboveground biomass of herbaceous marsh vegetation in temperate humid and semi-humid regions was relatively larger in the regions with higher average annual temperature. The results can provide scientific basis for accurately evaluating the adjustment action of wetland ecosystems on climate, and provide decision support for adaptive management of wetland ecosystems.展开更多
Assessment of ecological fitness of woody species across land use is critical issues in degraded land restoration.However,little is known about AGBC stored capacity,important value and distribution index of woody spec...Assessment of ecological fitness of woody species across land use is critical issues in degraded land restoration.However,little is known about AGBC stored capacity,important value and distribution index of woody species grows in exclosure and adjacent open lands.Therefore,this research is aimed to(i)analyse impact of exclosure on AGBC(ii)ecological fit species.A random sampling method was employed.Forty sample plots(50m*50m)were used.AGBC stocks(mean±SE)of woody species in adjacent open grazing and exclosure land use of GW site was 0.11±0.07 and 1.24±0.27Mg ha^(-1) respectively.While in adjacent open grazing and exclosure land use of WG site,the value was 0.27±0.03 and 2.79±0.27Mgha^(-1) respectively.In both site exclosure land uses,the proportion of rare,occasional and common woody species were better than their adjacent open grazing land.Cupressus lustanica from open grazing and Vernonia auriculifera from exclosure land use of WG as well as Croton macrostachyus from open grazing and Leucaena leucocephala fromexclosure land use of GWsite were recorded as top ecologically fit species.It is recommended to protect degraded lands via integrating ecologically adapted native species and fully used their diversity to achieve the potential benefits of land restoration.展开更多
This study was carried out to determine the performance of percentile-based Weibull diameter distribution model for Pinus thunbergii stands thriving along the eastern coast of South Korea. The parameter recovery techn...This study was carried out to determine the performance of percentile-based Weibull diameter distribution model for Pinus thunbergii stands thriving along the eastern coast of South Korea. The parameter recovery technique was used to estimate the three parameters of the Weibull model. The analysis demonstrated satisfactory results based on the following test statistics for the principal percentile models: fit index (FI) range from 0.501(minimum diameter) to 0.932 (50th diameter percentiles) and root mean square error (RMSE) range from 0.112 (quadratic mean diameter) to 3.572 (minimum diameter). The developed model was further evaluated by determining the mean bias (E) in trees per ha (TPH) for each diameter class, and the results showed highest over-prediction in the 20 cm, and under-prediction in the x6 cm and 24 cm diameter classes. The goodness of fit tested by Kolmogorov- Smirnov (KS) test showed no significant differences (P〉0.05) between the observed and predicted diameter distributions for almost all plots. Using site index and aboveground biomass (AGB) models developed for P. thunbergii in South Korea, a model to predict the AGB per ha for each diameter class and subsequently the total AGB of the stand was created. An application guide was also created, which will serve as a decision-support tool for forest managers in quantifying the future total AGB in P. thunbergii stands located in the eastern coast of South Korea and, subsequently, the quantification of potential carbon stocks aside from being a vital input in designing efficient management and protection strategies for these stands.展开更多
基金Under the auspices of the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA19030202)National Key Research and Development Program of China (No. 2020YFE0200800)+1 种基金International Cooperation and Exchange of National Natural Science Foundation of China (No. 31761143018)National Natural Science Foundation of China (No.42071344)。
文摘The grassland in the Hindu Kush Himalayan(HKH) region is one of the large st and most biodiverse mountain grassland types in the world,and its ecosystem service functions have profound impacts on the sustainable development of the HKH region.Monitoring the spatiotemporal distribution of grassland aboveground biomass(AGB) accurately and quantifying its response to climate change are indispensable sources of information for sustainably managing grassland ecosystems in the HKH region.In this study,a pure vegetation index model(PVIM) was applied to estimate the long-term dynamics of grassland AGB in the HKH region during 2000-2018.We further quantified the response of grassland AGB to climate change(temperature and precipitation) by partial correlation and variance partitioning analyses and then compared their differences with elevation.Our results demonstrated that the grassland AGB predicted by the PVIM had a good linear relationship with the ground sampling data.The grassland AGB distribution pattern showed a decreasing trend from east to west across the HKH region except in the southern Himalayas.From 2000 to 2018,the mean AGB of the HKH region increased at a rate of 1.57 g/(m~2·yr) and ranged from 252.9(2000) to 307.8 g/m~2(2018).AGB had a positive correlation with precipitation in more than 80% of the grassland,and temperature was positively correlated with AGB in approximately half of the region.The change in grassland AGB was more responsive to the cumulative effect of annual precipitation,while it was more sensitive to the change in temperature in the growing season;in addition,the influence of climate varied at different elevations.Moreover,compared with that of temperature,the contribution of precipitation to grassland AGB change was greater in approximately 60% of the grassland,but the differences in the contribution for each climate factor were small between the two temporal scales at elevations over 2000 m.An accurate assessment of the temporal and spatial distributions of grassland AGB and the quantification of its response to climate change are of great significance for grassland management and sustainable development in the HKH region.
基金supported by the National Science&Technology Fundamental Resources Investigation Program of China(Grant No.2013FY111800)the National Natural Science Foundation of China(Grant Nos.41971065 and U19A2042)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.ZDBS-LY7019),the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2019235)。
文摘Herbaceous marsh is the most widely distributed type of marsh wetland ecosystem,and has important ecological functions such as water conservation,climate regulation,carbon storage and fixation,and sheltering rare species.The carbon sequestration function of herbaceous marsh plays a key role in slowing climate warming and maintaining regional environmental stability.Vegetation biomass is an important index reflecting the carbon sequestration capacity of wetlands.Investigating the biomass of marsh vegetation can provide a scientific basis for estimating the carbon storage and carbon sequestration capacity of marshes.Based on field survey data of aboveground biomass of herbaceous marsh vegetation and the distribution data set of marsh in China,we analyzed the aboveground biomass and its spatial distribution pattern of herbaceous marsh on a national scale for the first time.The results showed that in China the total area of herbaceous marsh was 9.7×10^(4) km^(2),the average density of aboveground biomass of herbaceous marsh vegetation was 227.5±23.0 g C m-2(95%confidence interval,the same below),and the total aboveground biomass was 22.2±2.2 Tg C(1 Tg=1012 g).The aboveground biomass density of herbaceous marsh vegetation is generally low in Northeast China and the Tibetan Plateau,and high in central North China and coastal regions in China.In different marsh distribution regions of China,the average biomass density of herbaceous marsh vegetation from small to large was as follows:temperate humid and semi-humid marsh region(182.3±49.3 g C m^(-2))<Tibetan Plateau marsh region(243.9±26.6 g C m-2)<temperate arid and semi-arid marsh region(300.5±73.2 g C m-2)<subtropical humid marsh region(348.4±59.0 g C m-2)<coastal marsh region(675.4±73.8 g C m-2). Due to the different area of herbaceous marsh, the total aboveground biomass of herbaceous marsh vegetation in different marsh distribution regions was the largest in the temperate humid and semi-humid marsh region(9.6±2.6 Tg C), and was the smallest in the coastal marsh region(1.1±0.1 Tg C). The spatial distribution of aboveground biomass of herbaceous marsh vegetation in China has obvious non-zonality characteristics, but also presents certain zonality in some regions. The aboveground biomass of herbaceous marsh vegetation in the Tibetan Plateau decreased with the increase of altitude. With the aggravation of drought, the aboveground biomass of herbaceous marsh vegetation in temperate humid and semi-humid regions and temperate arid and semi-arid regions decreased first and then did not obviously change. The aboveground biomass of herbaceous marsh vegetation in temperate humid and semi-humid regions was relatively larger in the regions with higher average annual temperature. The results can provide scientific basis for accurately evaluating the adjustment action of wetland ecosystems on climate, and provide decision support for adaptive management of wetland ecosystems.
基金The first author acknowledges the financial support by Federal Democratic Republic of EthiopiaCommission of Environment,Forest and Climate changeEthiopian Environment and Forest Research Institute.
文摘Assessment of ecological fitness of woody species across land use is critical issues in degraded land restoration.However,little is known about AGBC stored capacity,important value and distribution index of woody species grows in exclosure and adjacent open lands.Therefore,this research is aimed to(i)analyse impact of exclosure on AGBC(ii)ecological fit species.A random sampling method was employed.Forty sample plots(50m*50m)were used.AGBC stocks(mean±SE)of woody species in adjacent open grazing and exclosure land use of GW site was 0.11±0.07 and 1.24±0.27Mg ha^(-1) respectively.While in adjacent open grazing and exclosure land use of WG site,the value was 0.27±0.03 and 2.79±0.27Mgha^(-1) respectively.In both site exclosure land uses,the proportion of rare,occasional and common woody species were better than their adjacent open grazing land.Cupressus lustanica from open grazing and Vernonia auriculifera from exclosure land use of WG as well as Croton macrostachyus from open grazing and Leucaena leucocephala fromexclosure land use of GWsite were recorded as top ecologically fit species.It is recommended to protect degraded lands via integrating ecologically adapted native species and fully used their diversity to achieve the potential benefits of land restoration.
基金support from the Forest Science and Technology Projects(Project No.S211415L010140)provided by the Korea Forest Service
文摘This study was carried out to determine the performance of percentile-based Weibull diameter distribution model for Pinus thunbergii stands thriving along the eastern coast of South Korea. The parameter recovery technique was used to estimate the three parameters of the Weibull model. The analysis demonstrated satisfactory results based on the following test statistics for the principal percentile models: fit index (FI) range from 0.501(minimum diameter) to 0.932 (50th diameter percentiles) and root mean square error (RMSE) range from 0.112 (quadratic mean diameter) to 3.572 (minimum diameter). The developed model was further evaluated by determining the mean bias (E) in trees per ha (TPH) for each diameter class, and the results showed highest over-prediction in the 20 cm, and under-prediction in the x6 cm and 24 cm diameter classes. The goodness of fit tested by Kolmogorov- Smirnov (KS) test showed no significant differences (P〉0.05) between the observed and predicted diameter distributions for almost all plots. Using site index and aboveground biomass (AGB) models developed for P. thunbergii in South Korea, a model to predict the AGB per ha for each diameter class and subsequently the total AGB of the stand was created. An application guide was also created, which will serve as a decision-support tool for forest managers in quantifying the future total AGB in P. thunbergii stands located in the eastern coast of South Korea and, subsequently, the quantification of potential carbon stocks aside from being a vital input in designing efficient management and protection strategies for these stands.
基金This study is funded by the National Key Projects for Basic Research (G19980 40 813 ) ,CAS’sKnowledge Innovation Project(CX10G-C0 0-0 2,CX10G-E0 1-0 2-0 3)and Internati on alCooperation Project of the USDAForestService Northern Global Change Program (0