期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructure and abrasion wear behavior of Ni-based laser cladding alloy layer at high temperature 被引量:3
1
作者 刘勇 刘素芹 王顺兴 《Journal of Central South University of Technology》 EI 2005年第4期403-405,共3页
Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high t... Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i.e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+ 0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature. 展开更多
关键词 Ni-based laser cladding layer MICROSTRUCTURE abrasion wear behavior high temperature
下载PDF
Effect of tungsten carbide particles on microstructure and mechanical properties of Cu alloy composite bit matrix
2
作者 Ding-qian Dong Feng-yuan He +5 位作者 Xin-hui Chen Hui Li Kai-hua Shi Hui-wen Xiong Xin Xiang Li Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第2期519-530,共12页
Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungst... Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungsten carbide and sintered reduced tungsten carbide particles.The effects of powder particle morphology,particle size and mass fraction of tungsten carbide on the microstructure and mechanical properties of copper alloy composite were investigated by means of scanning electron microscopy,X-ray diffraction and abrasive wear test in detail.The results show that tungsten carbide morphology and particle size have obvious effects on the mechanical properties of copper alloy composites.Cast tungsten carbide partially dissolved in the copper alloy binding phase,and layers of Cu_(0.3)W_(0.5)Ni_(0.1)Mn_(0.1)C phase with a thickness of around 8–15μm were formed on the edge of the cast tungsten carbide.When 45%irregular crushed fine cast tungsten carbide and 15%monocrystalline cast tungsten carbide were used as the skeleton,satisfactory comprehensive performance of the reinforced copper alloy composite bit matrix was obtained,with the bending strength,impact toughness and hardness reaching 1048 MPa,4.95 J/cm^(2) and 43.6 HRC,respectively.The main wear mechanism was that the tungsten carbide particles firstly protruded from the friction surface after the copper alloy matrix was worn,and then peeled off from the matrix when further wear occurred. 展开更多
关键词 Polycrystalline diamond compact Pressureless vacuum infiltration Copper alloy composite bit matrix Microstructure characterization abrasive wear behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部