Soft abrasive flow(SAF) finishing can process the irregular geometric surfaces, but with the matter of low processing efficiency. To address the issue, an improved SAF finishing method based on turbulent kinetic ene...Soft abrasive flow(SAF) finishing can process the irregular geometric surfaces, but with the matter of low processing efficiency. To address the issue, an improved SAF finishing method based on turbulent kinetic energy enhancing is proposed. A constrained flow passage with serration cross-section is constructed to increase the turbulence intensity. Taking the constrained flow passage as the objective, a two-phase fluid dynamic model is set up by using particle trajectory model and standard k-ε turbulence model, and the flow field characteristics of the flow passage are acquired. The numerical results show that the serration flow passage can enhance the turbulence intensity, uniform the particles distribution, and increase the particle concentration near the bottom wall. The observation results by particle image velocimetry(PIV) show that the internal vortex structures are formed in flow passage, and the abrasive flow takes on turbulence concentrating phenomenon in near-wall region. The finishing experiments prove that the proposed method can obtain better surface uniformity, and the processing efficiency can be improved more 35%. This research provides an abrasive flow modeling method to reveal the particle motion regulars, and canoffer references to the technical optimization of fluid-based precision processing.展开更多
The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and ...The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and researched by combining theory,numerical and experimental methods.The direct simulation Monte Carlo(DSMC)method and the finite element analysis method were combined to reveal the random collision of particles during the precision machining of abrasive flow.Under different inlet velocity,volume fraction and abrasive particle size,the dynamic pressure and turbulence flow energy of abrasive flow in elbow were analyzed,and the machining mechanism of particles on the wall and the influence of different machining parameters on the precision machining quality of abrasive flow were obtained.The test results show the order of the influence of different parameters on the quality of abrasive flow precision machining and establish the optimal process parameters.The results of the surface morphology before and after the precision machining of the inner surface of the elbow are discussed,and the surface roughness Ra value is reduced from 1.125μm to 0.295μm after the precision machining of the abrasive flow.The application of DSMC method provides special insights for the development of abrasive flow technology.展开更多
Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the...Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the abrasive flow machining(AFM) is selected for reducing the surface roughness and sharpening the cutting edge. Comparative cutting tests are conducted on di erent types of coated cutters before and after AFM, as well as uncoated WC?Co one, demonstrating that the boron?doped microcrystalline and undoped fine?grained composite diamond coated cutter after the AFM(AFM?BDM?UFGCD) is a good choice for the finish milling of the 6063 Al alloy in the present case, because it shows favorable machining quality close to the uncoated one, but much prolonged tool lifetime. Besides, compared with the micro?sized diamond films, it is much more convenient and e cient to finish the BDM?UFGCD coated cutter covered by nano?sized diamond grains, and resharpen its cutting edge by the AFM, owing to the lower initial surface roughness and hardness. Moreover, the boron incorporation and micro?sized grains in the underly?ing layer can enhance the film?substrate adhesion, avoid the rapid film removal in the machining process, and thus maximize the tool life(1040 m, four times more than the uncoated one). In general, the AFM is firstly proposed and discussed for post?processing the diamond coated complicated cutting tools, which is proved to be feasible for improving the cutting performance展开更多
The polishing efficiency of the soft abrasive flow(SAF)method is low,which is not in line with the concept of carbon emission reduction in industrial production.To address the above issue,a two-phase fluid multi-physi...The polishing efficiency of the soft abrasive flow(SAF)method is low,which is not in line with the concept of carbon emission reduction in industrial production.To address the above issue,a two-phase fluid multi-physics modeling method for ultrasonic-assisted SAF processing is proposed.The acoustics-fluid coupling mechanic model based on the realizable k-ε model and Helmholtz equation is built to analyze the cavitation effect.The results show that the pro-posed modeling and solution method oriented to ultrasonic-assisted SAF processing have better revealed the flow field evolution mechanism.The turbulence kinetic energy at different ultrasonic frequencies and amplitudes is stud-ied.Simulation results show that the ultrasonic vibration can induce a cavitation effect in the constrained flow chan-nel and promote the turbulence intensity and uniformity of the abrasive flow.A set of comparative polishing experiments with or without ultrasonic vibration are conducted to explore the performance of the proposed method.It can be found that the ultrasonic-assisted SAF method can improve the machining efficiency and uniformity,to achieve the purpose of carbon emission reduction.The relevant result can offer a helpful reference for the SAF method.展开更多
In this study,the machining mechanism of abrasive flow machining(AFM)microstructures was analyzed in depth according to the transmission morphology and rheological behaviors of the abrasive media.The transmission morp...In this study,the machining mechanism of abrasive flow machining(AFM)microstructures was analyzed in depth according to the transmission morphology and rheological behaviors of the abrasive media.The transmission morphology demonstrated the excellent combination of the polymer melt with abrasive grains at the interface,indicating that the polymer melt,combined with the uniform distribution of the polymer chains,could exert a harmonious axial force on the abrasive grains.Based on the rheological behavior analysis of the abrasive media,for example,the stress relaxation and moduli of storage and loss,a machining mechanism model was established incorporating the effect of microplastic deformation and continuous viscous flow,which was further verified by the grooves along the flow direction.In addition,the PhanThien-Tanner(PTT)model combined with a wall slipping model was employed to simulate the machining process for the first time here.The value of the simulated pressure(1.3 MPa)was similar to the measured pressure(1.45 MPa),as well as the simulated volumetric rate(0.0114 mL/s)to the measured volumetric rate(0.067 mL/s),which further proved the validity of the simulation results.The flow duration(21 s)derived from a velocity of 1.2 mm/s further confirmed the residual stretched state of the polymer chains,which favored the elasticity of the abrasive media on the grains.Meanwhile,the roughly uniform distribution of the shear rate at the main machining region exhibited the advantages of evenly spread storage and loss moduli,contributing to the even extension of indentation caused by the grains on the target surface,which agreed with the mechanism model and machined surface morphology.展开更多
This paper reviews recent developments of the soft abrasive flow finishing(SAF)method in constraint space.The multiphase fluid dynamics modeling,material removal mechanism,auxiliary strengthening finishing techniques,...This paper reviews recent developments of the soft abrasive flow finishing(SAF)method in constraint space.The multiphase fluid dynamics modeling,material removal mechanism,auxiliary strengthening finishing techniques,and observation of surface impact effects by abrasive particles and cavitation bubbles are presented in brief.Development prospects and challenges are given for four aspects:thin-walled curved surfaces,biomedical functions,electronic information,and precise optical components.展开更多
Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media vis...Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experi- mental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a Newtonian fluid and the flow laminar with no wall slip.展开更多
Abrasive suspension flow machining(ASFM)is an advanced finishing method that uses an abrasive suspension slurry for grinding and chamfering as well as the finishing of inaccessible components.This study examines the e...Abrasive suspension flow machining(ASFM)is an advanced finishing method that uses an abrasive suspension slurry for grinding and chamfering as well as the finishing of inaccessible components.This study examines the effect of back pressure on the grinding characteristics of an abrasive suspension flow during the grinding of slender holes.A numerical model was developed to simulate the abrasive suspension flow in a slender hole and was verified experimentally using injector nozzle grinding equipment under different grinding pressures and back pressures.It is shown that the ASFM with back pressure not only eliminates the cavitation flow in the spray hole,but also increases the number of effective abrasive particles and the flow coefficient.Increasing the back pressure during the grinding process can increase the Reynolds number of the abrasive suspension flow and reduce the thickness of the boundary layer in the slender hole.Moreover,increasing the back pressure can improve the flow rate of the injector nozzle and its grinding performance.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51375446,51575494)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LR16E050001,LZ14E050001)
文摘Soft abrasive flow(SAF) finishing can process the irregular geometric surfaces, but with the matter of low processing efficiency. To address the issue, an improved SAF finishing method based on turbulent kinetic energy enhancing is proposed. A constrained flow passage with serration cross-section is constructed to increase the turbulence intensity. Taking the constrained flow passage as the objective, a two-phase fluid dynamic model is set up by using particle trajectory model and standard k-ε turbulence model, and the flow field characteristics of the flow passage are acquired. The numerical results show that the serration flow passage can enhance the turbulence intensity, uniform the particles distribution, and increase the particle concentration near the bottom wall. The observation results by particle image velocimetry(PIV) show that the internal vortex structures are formed in flow passage, and the abrasive flow takes on turbulence concentrating phenomenon in near-wall region. The finishing experiments prove that the proposed method can obtain better surface uniformity, and the processing efficiency can be improved more 35%. This research provides an abrasive flow modeling method to reveal the particle motion regulars, and canoffer references to the technical optimization of fluid-based precision processing.
基金Projects(51206011,U1937201)supported by the National Natural Science Foundation of ChinaProject(20200301040RQ)supported by the Science and Technology Development Program of Jilin Province,China+1 种基金Project(JJKH20190541KJ)supported by the Education Department of Jilin Province,ChinaProject(18DY017)supported by Changchun Science and Technology Program of Changchun City,China。
文摘The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and researched by combining theory,numerical and experimental methods.The direct simulation Monte Carlo(DSMC)method and the finite element analysis method were combined to reveal the random collision of particles during the precision machining of abrasive flow.Under different inlet velocity,volume fraction and abrasive particle size,the dynamic pressure and turbulence flow energy of abrasive flow in elbow were analyzed,and the machining mechanism of particles on the wall and the influence of different machining parameters on the precision machining quality of abrasive flow were obtained.The test results show the order of the influence of different parameters on the quality of abrasive flow precision machining and establish the optimal process parameters.The results of the surface morphology before and after the precision machining of the inner surface of the elbow are discussed,and the surface roughness Ra value is reduced from 1.125μm to 0.295μm after the precision machining of the abrasive flow.The application of DSMC method provides special insights for the development of abrasive flow technology.
基金Supported by National Natural Science Foundation of China(Grant No.51275302)China Postdoctoral Science Foundation Special Funded Project(Grant No.2016T90370)China Postdoctoral Science Foundation(Grant No.2015M580327)
文摘Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the abrasive flow machining(AFM) is selected for reducing the surface roughness and sharpening the cutting edge. Comparative cutting tests are conducted on di erent types of coated cutters before and after AFM, as well as uncoated WC?Co one, demonstrating that the boron?doped microcrystalline and undoped fine?grained composite diamond coated cutter after the AFM(AFM?BDM?UFGCD) is a good choice for the finish milling of the 6063 Al alloy in the present case, because it shows favorable machining quality close to the uncoated one, but much prolonged tool lifetime. Besides, compared with the micro?sized diamond films, it is much more convenient and e cient to finish the BDM?UFGCD coated cutter covered by nano?sized diamond grains, and resharpen its cutting edge by the AFM, owing to the lower initial surface roughness and hardness. Moreover, the boron incorporation and micro?sized grains in the underly?ing layer can enhance the film?substrate adhesion, avoid the rapid film removal in the machining process, and thus maximize the tool life(1040 m, four times more than the uncoated one). In general, the AFM is firstly proposed and discussed for post?processing the diamond coated complicated cutting tools, which is proved to be feasible for improving the cutting performance
基金Supported by National Natural Science Foundation of China(Grant No.52175124)Zhejiang Provincial Natural Science Foundation(Grant No.LZ21E050003)Fundamental Research Funds for the Zhejiang Universities(Grant No.RF-C2020004).
文摘The polishing efficiency of the soft abrasive flow(SAF)method is low,which is not in line with the concept of carbon emission reduction in industrial production.To address the above issue,a two-phase fluid multi-physics modeling method for ultrasonic-assisted SAF processing is proposed.The acoustics-fluid coupling mechanic model based on the realizable k-ε model and Helmholtz equation is built to analyze the cavitation effect.The results show that the pro-posed modeling and solution method oriented to ultrasonic-assisted SAF processing have better revealed the flow field evolution mechanism.The turbulence kinetic energy at different ultrasonic frequencies and amplitudes is stud-ied.Simulation results show that the ultrasonic vibration can induce a cavitation effect in the constrained flow chan-nel and promote the turbulence intensity and uniformity of the abrasive flow.A set of comparative polishing experiments with or without ultrasonic vibration are conducted to explore the performance of the proposed method.It can be found that the ultrasonic-assisted SAF method can improve the machining efficiency and uniformity,to achieve the purpose of carbon emission reduction.The relevant result can offer a helpful reference for the SAF method.
基金sponsored by the National Natural Science Foundation of China(Grant No.52175423)KeyArea Research and Development Program of Guangdong Province(Guangdong Science and Technology Department)(Grant No.2020B010185001)+1 种基金Huohua Project(Grant No.20-163-00-TS-009-159-01)Shanghai Municipal Human Resources and Social Security Bureau-Pujiang Program(Grant No.2019PJD021).
文摘In this study,the machining mechanism of abrasive flow machining(AFM)microstructures was analyzed in depth according to the transmission morphology and rheological behaviors of the abrasive media.The transmission morphology demonstrated the excellent combination of the polymer melt with abrasive grains at the interface,indicating that the polymer melt,combined with the uniform distribution of the polymer chains,could exert a harmonious axial force on the abrasive grains.Based on the rheological behavior analysis of the abrasive media,for example,the stress relaxation and moduli of storage and loss,a machining mechanism model was established incorporating the effect of microplastic deformation and continuous viscous flow,which was further verified by the grooves along the flow direction.In addition,the PhanThien-Tanner(PTT)model combined with a wall slipping model was employed to simulate the machining process for the first time here.The value of the simulated pressure(1.3 MPa)was similar to the measured pressure(1.45 MPa),as well as the simulated volumetric rate(0.0114 mL/s)to the measured volumetric rate(0.067 mL/s),which further proved the validity of the simulation results.The flow duration(21 s)derived from a velocity of 1.2 mm/s further confirmed the residual stretched state of the polymer chains,which favored the elasticity of the abrasive media on the grains.Meanwhile,the roughly uniform distribution of the shear rate at the main machining region exhibited the advantages of evenly spread storage and loss moduli,contributing to the even extension of indentation caused by the grains on the target surface,which agreed with the mechanism model and machined surface morphology.
基金supported by the National Natural Science Foundation of China(Nos.52175124 and 52305139)the Natural Science Foundation of Zhejiang Province(Nos.LZ21E050003,LY17E050004,and LQ23E050017)+1 种基金the Zhejiang Provincial Postdoctoral Merit-Based Funding Project(No.ZJ2022068)the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(No.GZKF-202125),China.
文摘This paper reviews recent developments of the soft abrasive flow finishing(SAF)method in constraint space.The multiphase fluid dynamics modeling,material removal mechanism,auxiliary strengthening finishing techniques,and observation of surface impact effects by abrasive particles and cavitation bubbles are presented in brief.Development prospects and challenges are given for four aspects:thin-walled curved surfaces,biomedical functions,electronic information,and precise optical components.
文摘Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experi- mental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a Newtonian fluid and the flow laminar with no wall slip.
文摘Abrasive suspension flow machining(ASFM)is an advanced finishing method that uses an abrasive suspension slurry for grinding and chamfering as well as the finishing of inaccessible components.This study examines the effect of back pressure on the grinding characteristics of an abrasive suspension flow during the grinding of slender holes.A numerical model was developed to simulate the abrasive suspension flow in a slender hole and was verified experimentally using injector nozzle grinding equipment under different grinding pressures and back pressures.It is shown that the ASFM with back pressure not only eliminates the cavitation flow in the spray hole,but also increases the number of effective abrasive particles and the flow coefficient.Increasing the back pressure during the grinding process can increase the Reynolds number of the abrasive suspension flow and reduce the thickness of the boundary layer in the slender hole.Moreover,increasing the back pressure can improve the flow rate of the injector nozzle and its grinding performance.