期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Abrasive Waterjet Machining Simulation by Coupling Smoothed Particle Hydrodynamics /Finite Element Method 被引量:10
1
作者 WANG Jianming GAO Na GONG Wenjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期568-573,共6页
In dealing with abrasive waterjet machining(AWJM) simulation,most literatures apply finite element method(FEM) to build pure waterjet models or single abrasive particle erosion models.To overcome the mesh distorti... In dealing with abrasive waterjet machining(AWJM) simulation,most literatures apply finite element method(FEM) to build pure waterjet models or single abrasive particle erosion models.To overcome the mesh distortion caused by large deformation using FEM and to consider the effects of both water and abrasive,the smoothed particle hydrodynamics(SPH) coupled FEM modeling for AWJM simulation is presented,in which the abrasive waterjet is modeled by SPH particles and the target material is modeled by FEM.The two parts interact through contact algorithm.Utilizing this model,abrasive waterjet with high velocity penetrating the target materials is simulated and the mechanism of erosion is depicted.The relationships between the depth of penetration and jet parameters,including water pressure and traverse speed,etc,are analyzed based on the simulation.The simulation results agree well with the existed experimental data.The mixing multi-materials SPH particles,which contain abrasive and water,are adopted by means of the randomized algorithm and material model for the abrasive is presented.The study will not only provide a new powerful tool for the simulation of abrasive waterjet machining,but also be beneficial to understand its cutting mechanism and optimize the operating parameters. 展开更多
关键词 abrasive waterjet machining randomized algorithm coupling SPH/FEM abrasive material models
下载PDF
Feasibility Study on V Fe Alloy Slag as Abrasive Material
2
作者 甄强 肖红 +2 位作者 陈厚生 吉红兵 王先陶 《Rare Metals》 SCIE EI CAS CSCD 1999年第4期270-274,共5页
The possibility of using V-Fe alloy slag as abrasive material was investigated. The chemical constitution and microstructure of the V-Fe alloy slag were examined. It is found that the slag contains about 90% Al2O3 exi... The possibility of using V-Fe alloy slag as abrasive material was investigated. The chemical constitution and microstructure of the V-Fe alloy slag were examined. It is found that the slag contains about 90% Al2O3 existing as corundum with high hardness (> 30 GPa) and high bulk density (> 3.6 g/cm(3)). The V-Fe alloy slag can be applied to abrasive material instead of brown alumina (or black alumina). 展开更多
关键词 V-Fe alloy slag corundum abrasive material
下载PDF
Abrasion Resistant Refractory Materials
3
作者 Yu Lingyan 《China's Refractories》 CAS 2009年第4期27-31,共5页
1 Scope This standard specifies the definition, classification, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of abrasion resist... 1 Scope This standard specifies the definition, classification, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of abrasion resistant refractory materials. 展开更多
关键词 ARP ARB Abrasion Resistant Refractory materials ARC
下载PDF
Optimize Multiple Peening Effects on Surface Integrity and Microhardness of Aluminum Alloy Induced by LSP
4
作者 Enoch Asuako Larson Samuel Adu-Gyamfi +7 位作者 Milku Augustine Philip Yamba Jamal-Deen Kukurah Karimu Abdulai Joseph Sekyi-Ansah Osman Abdul-Razak Emmanuel A. Akurugu Aston Kuzmin 《Materials Sciences and Applications》 2023年第3期208-221,共14页
Laser shock peening is a modernized surface enhancement performed methodically to improve fatigue life, enhance the hardness of the material and make coarse grains flat under the superficial layer. In this current stu... Laser shock peening is a modernized surface enhancement performed methodically to improve fatigue life, enhance the hardness of the material and make coarse grains flat under the superficial layer. In this current study, the effect of varying optimized multiple laser shock peening (LSP) is studied on the surface integrity, microhardness, and mechanical properties. The results show that the LSP-treated specimens have visible signs of valleys, wavy and varying height distribution as well as dimples. However, the presence of non-uniformity and sharp protrusions was detected from the superficiality of the as-received specimen and this was so because of the SiC abrasive material used to polish the superficial layer of the specimen before the test experiment. Prior to LSP, the surface roughness was 2 μm, however, after LSP the roughness increased to 4 μm, 6 μm and 17 μm for 1, 2, and 4 impacts, respectively. High-density dislocation can also be observed close to the grain boundary because the grain boundary prevents the migration of dislocation which could lead to dislocation walls and dislocation tangles. The increase in impacts decrease the average grain size, nevertheless, the micro-strain increased after multiple impacts. Furthermore, coarse grains after LSP were transformed into finer grains. The increase in the number of impacts increases the micro-strain likewise the full-width half maximum (FWHM). Finally, the increase in microhardness increases as the LSP impacts increase. 展开更多
关键词 Surface Integrity MICROHARDNESS Sharp Protrusions SiC abrasive Material FWHM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部