The technique of creep feed grinding is most suitable for geometrical shaping, and therefore has been expected to improve effectively material removal rate and surface quality of components with complex profile. This ...The technique of creep feed grinding is most suitable for geometrical shaping, and therefore has been expected to improve effectively material removal rate and surface quality of components with complex profile. This article studies experimentally the effects of process parameters (i.e. wheel speed, workpiece speed and depth of cut) on the grindability and surface integrity of cast nickel-based superalloys, i.e. K424, during creep feed grinding with brazed cubic boron nitride (CBN) abrasive wheels. Some important factors, such as grinding force and temperature, specific grinding energy, size stability, surface topography, microhardhess and microstructure alteration of the sub-surface, residual stresses, are investigated in detail. The results show that during creep feed grinding with brazed CBN wheels, low grinding temperature at about 100 ℃ is obtained though the specific grinding energy of nickel-based superalloys is high up to 200-300 J/mm^3. A combination of wheel speed 22.5 m/s, workpiece speed 0.1 m/min, depth of cut 0.2 mm accomplishes the straight grooves with the expected dimensional accuracy. Moreover, the compressive residual stresses are formed in the bum-free and crack-free ground surface.展开更多
In this article,a grinding force model,which is on the basis of cutting process of single abrasive grains combined with the method of theoretical derivation and empirical formula by analyzing the formation mechanism o...In this article,a grinding force model,which is on the basis of cutting process of single abrasive grains combined with the method of theoretical derivation and empirical formula by analyzing the formation mechanism of grinding force,was established.Three key factors have been taken into accounts in this model,such as the contact friction force between abrasive grains and materials,the plastic deformation of material in the process of abrasive plowing,and the shear strain effect of material during the process of cutting chips formation.The model was finally validated by the orthogonal grinding experiment of powder metallurgy nickel-based superalloy FGH96 by using the electroplated CBN abrasive wheel.Grinding force values of prediction and experiment were in good consistency.The errors of tangential grinding force and normal grinding force were 9.8%and 13.6%,respectively.The contributions of sliding force,plowing force and chip formation force were also analyzed.In addition,the tangential forces of sliding,plowing and chip formation are 14%,19%and 11%of the normal forces on average,respectively.The pro-posed grinding forcemodel is not only in favor of optimizing the grinding parameters and improving grinding efficiency,but also contributes to study some other grinding subjects(e.g.abrasive wheel wear,grinding heat,residual stress).展开更多
In this study,the machined surface quality of powder metallurgy nickel-based superalloy FGH96(similar to Rene88DT)and the grinding characteristics of brown alumina(BA)and microcrystalline alumina(MA)abrasive wheels we...In this study,the machined surface quality of powder metallurgy nickel-based superalloy FGH96(similar to Rene88DT)and the grinding characteristics of brown alumina(BA)and microcrystalline alumina(MA)abrasive wheels were comparatively analyzed during creep feed grinding.The infuences of the grinding parameters(abrasive wheel speed,workpiece infeed speed,and depth of cut)on the grinding force,grinding temperature,surface roughness,surface morphology,tool wear,and grinding ratio were analyzed comprehensively.The experimental results showed that there was no significant difference in terms of the machined surface quality and grinding characteristics of FGH96 during grinding with the two types of abrasive wheels.This was mainly because the grinding advantages of the MA wheel were weakened for the difficult-to-cut FGH96 material.Moreover,both the BA and MA abrasive wheeIs exhibited severe tool wear in the form of wheel clogging and workpiece material adhesion.Finally,an analytical model for prediction of the grinding ratio was established by combining the tool wear volume,grinding force,and grinding length.The acceptable errors between the predicted and experimental grinding ratios(ranging from 0.6 to 1.8)were 7.56%and 6.31%for the BA and MA abrasive wheels,respectively.This model can be used to evaluate quantitatively the grinding performance of an alumina abrasive wheel,and is therefore helpful for optimizing the grinding parameters in the creep feed grinding process.展开更多
As is known to all, grinding force is one of the most important parameters to evaluate the whole process of grinding. Generally, the grinding force is resolved to three component forces, namely, normal grinding force ...As is known to all, grinding force is one of the most important parameters to evaluate the whole process of grinding. Generally, the grinding force is resolved to three component forces, namely, normal grinding force F n, tangential grinding force F t and a component force acting along the direction of longitudinal feed which is usually neglected because of insignificance. The normal grinding force F n has influence upon surface deformation and roughness of workpiece, while the tangential grinding force F t mainly affect power consumption and service life of grinding wheel. In order to study deep into the process of the unsteady state grinding, we set up a measurement system to monitor the change of grinding force during the course of grinding and try to find some difference in the change of grinding force between the steady state grinding and unsteady state grinding. In the test, the normal and tangential grinding forces, F n and F t were measured by using a set of equipments including sensor, amplifier, oscilloscope and computer monitor. From the results, we can conclude that: 1) In the unsteady state grinding process, the values of the grinding forces are much lower than those of the steady state grinding process and the grinding force ratio showed a nonlinear fluctuation. 2) The tendency of the grinding forces in the process of the unsteady state grinding proved the existence of the cutting and micro-cutting actions. 3) Because the grinding force signals of the unsteady state grinding are much weaker than those of the steady state grinding, to obtain accurate value of the grinding forces, wave filtering is needed to be done. The whole process to filter the perturbation wave can be separated into three steps in order, changing the grinding force signals from analog signals into digital signals, FFT (fast Fourier transform) treatment to the digital signals, and IFFT(inversion fast Fourier transform) treatment to the digital signals after spectrum limitation.展开更多
In conventional grinding theory, it is obvious that there must be a very high hardness difference between grains of the grinding wheel and workpieces. The best grinding wheels are those giving the lowest "natural...In conventional grinding theory, it is obvious that there must be a very high hardness difference between grains of the grinding wheel and workpieces. The best grinding wheels are those giving the lowest "natural limiting surface roughness" while cutting at appreciable plunge velocities. With the development of new materials and new machining processes, conventional theories of grinding techniques are no longer suitable to explain many phenomena in the course of grinding procedures. In dealing with precision or ultra-precision grinding processes of advanced ceramics, many results of experiments and practical production have shown that grinding with super hard materials wheels is not the only method to machine advanced ceramics. This paper is intended to propose a new grinding theory named as unsteady-state grinding technique evolved from some phenomena that can not be explained by conventional grinding theory. Unsteady-state grinding technique means the technique which can make the surface roughness of the materials, especially hard and brittle, be up to the standard of ultra-precision machining by utilizing common wheels characteristic of inferior self-sharpening and wear-resistance. In the process of machining, the common wheel need to be redressed about 3~5 times and the time between two redressings is about 3~5 minutes. As a validation of the new grinding technology, experimental work was performed to prove the existence of the unsteady state in the process of ultra-precision grinding with common abrasive wheel-pink fused alumina wheel. From the results of the observation of the wheel topography, the whole grinding process in unsteady state was separated into three stages namely cutting by grains peaks, micro-cutting by micro edges of the broken grains and rubbing without material removal, which is different from conventional grinding theory. For the difference of hardness between grinding wheel and workpiece material is not so apparent, some people have doubts about whether the cutting especially micro-cutting actions exist in the process of unsteady state grinding. By utilizing the common abrasive wheel newly redressed to grind the finished surface of silicon nitride glut and comparing the finished surface with the damaged surface in SEM pattern and surface roughness, the existence of cutting and micro- cutting actions in the unsteady state grinding process was confirmed.展开更多
This paper evaluates the performance of creep feed grindingγ-TiAl intermetallic(Ti-45 Al-2 Mn-2 Nb)using electroplated diamond wheels.Firstly,a comparative analysis with the grinding results by using electroplated CB...This paper evaluates the performance of creep feed grindingγ-TiAl intermetallic(Ti-45 Al-2 Mn-2 Nb)using electroplated diamond wheels.Firstly,a comparative analysis with the grinding results by using electroplated CBN wheels was conducted,mainly involving abrasive wheel wear behavior and maximum material removal rate below surface burn limit.It was found that the diamond wheel would produce much better grinding results including lower wheel wear rate and higher maximum material removal rate.Then the surface integrity obtained at different level of material removal rate was characterized with the utilization of the diamond wheel.The poor ductility of thisγ-TiAl intermetallic material was found to have a marginal effect on the surface integrity,as no severe surface defects such as material pullout were generated during the stable wheel wear stage.For the involved operating parameters,a deformation layer was produced with~10μm or more in thickness depending on the material removal rate used.Meanwhile,a work-hardened layer extending to more than 100μm was produced with a maximum microhardness of above 520 HV0.05(bulk value 360 HV0.05).The residual stress remained compressive,with a value of above-100 MPa and even up to-500 MPa for an elevated material removal rate.Shearing chip was the main chip type,indicating good wheel sharpness in the grinding process.展开更多
K444 nickel-based superalloy is an important material to manufacture the gas turbine due to its excellent mechanical properties at high temperatures and corrosion resistance.Currently,grinding is the mostly used metho...K444 nickel-based superalloy is an important material to manufacture the gas turbine due to its excellent mechanical properties at high temperatures and corrosion resistance.Currently,grinding is the mostly used method for the surface finish of the K444 alloy components.However,few studies worked on the effects of the abrasive tool wear on the ground surface characteristics and corrosion properties of K444 alloy.This study uses two different-type alumina abrasive tools,i.e.,white alumina(WA)and microcrystalline alumina(MA)wheels,to grind the K444 alloy.The influence of the alumina abrasive tool wear on ground surface characteristics and corrosion resistance performance are investigated.It is discovered that the MA wheel presents a slighter wheel wear and higher self-sharpening than the WA wheel.Compared to the WA wheel,the MA wheel has less material adhesion,which leads to a better surface finish.In the corrosion testing,the maximum corrosion depth is 80μm in the surface ground by the MA wheel but 100μm in the surface ground by the WA wheel,which demonstrates that the MA wheel grinding benefits the surface corrosion resistance of K444 alloy.Therefore,this study could provide a guide to selecting the abrasive tools and optimizing the grinding process of the K444 alloy.展开更多
The machining surface integrity of aero-engine turbine disc slots has a significant impact on their fatigue life and service performance,and achieving efficiency and high-precision machining is still a great challenge...The machining surface integrity of aero-engine turbine disc slots has a significant impact on their fatigue life and service performance,and achieving efficiency and high-precision machining is still a great challenge.The high machining requirements of future aeroengine turbine disc slots will be difficult to satisfy using the broaching method.In addition,existing methods of slot machin-ing face difficulties in ensuring surface integrity.This study explored a cup shaped electroplated Cubic Boron Nitride(CBN)abrasive wheel for profile grinding the turbine disc slots of FGH96 powder metallurgy superalloy.The matrix structure of the cup shaped abrasive wheel was designed and verified.A profile grinding experiment was conducted for fir-tree slots on a five-axis machining center.The accuracy and the surface integrity were analyzed.Results show that the key dimension detection results of the slots were within the allowable tolerance range.Meanwhile,an average sur-face roughness Ra of 0.55μm was achieved,the residual stress was compressive,the plastic defor-mation layer thickness was less than 5μm,and the hardening layer thickness was less than 20μm.The research findings provide a new approach to machining the slots of aviation engine turbine discs and guidance for the high-quality processing of complex components.展开更多
基金National Basic Research Program of China (2009CB724403)Program for Changjiang Scholars and Innovative Research Team in University (IRT0837)Program for New Century Excellent Talents in University from Ministry of Education of China (NCET-07-0435)
文摘The technique of creep feed grinding is most suitable for geometrical shaping, and therefore has been expected to improve effectively material removal rate and surface quality of components with complex profile. This article studies experimentally the effects of process parameters (i.e. wheel speed, workpiece speed and depth of cut) on the grindability and surface integrity of cast nickel-based superalloys, i.e. K424, during creep feed grinding with brazed cubic boron nitride (CBN) abrasive wheels. Some important factors, such as grinding force and temperature, specific grinding energy, size stability, surface topography, microhardhess and microstructure alteration of the sub-surface, residual stresses, are investigated in detail. The results show that during creep feed grinding with brazed CBN wheels, low grinding temperature at about 100 ℃ is obtained though the specific grinding energy of nickel-based superalloys is high up to 200-300 J/mm^3. A combination of wheel speed 22.5 m/s, workpiece speed 0.1 m/min, depth of cut 0.2 mm accomplishes the straight grooves with the expected dimensional accuracy. Moreover, the compressive residual stresses are formed in the bum-free and crack-free ground surface.
基金financial support for this work by the National Natural Science Foundation of China(Nos.51775275,51921003 and 51905363)the Funding for Outstanding Doctoral Dissertation in NUAA of China(No.BCXJ19-06)+1 种基金the Natural Science Foundation of Jiangsu Province of China(No.BK20190940)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.19KJB460008)。
文摘In this article,a grinding force model,which is on the basis of cutting process of single abrasive grains combined with the method of theoretical derivation and empirical formula by analyzing the formation mechanism of grinding force,was established.Three key factors have been taken into accounts in this model,such as the contact friction force between abrasive grains and materials,the plastic deformation of material in the process of abrasive plowing,and the shear strain effect of material during the process of cutting chips formation.The model was finally validated by the orthogonal grinding experiment of powder metallurgy nickel-based superalloy FGH96 by using the electroplated CBN abrasive wheel.Grinding force values of prediction and experiment were in good consistency.The errors of tangential grinding force and normal grinding force were 9.8%and 13.6%,respectively.The contributions of sliding force,plowing force and chip formation force were also analyzed.In addition,the tangential forces of sliding,plowing and chip formation are 14%,19%and 11%of the normal forces on average,respectively.The pro-posed grinding forcemodel is not only in favor of optimizing the grinding parameters and improving grinding efficiency,but also contributes to study some other grinding subjects(e.g.abrasive wheel wear,grinding heat,residual stress).
基金supported by the National Natural Science Foundation of China(Grant Nos.51775275 and 51921003)National Major Science and Technology Project(Grant No.2017-Ⅶ-0002-0095)+2 种基金Funding for Outstanding Doctoral Dissertation in NUAA(Grant No.BCXJ19-06)the Six Talents Summit Project in Jiangsu Province(Grant No.JXQC-002)Fundamental Research Funds for the Central Universities(Grant No.NP2018110).
文摘In this study,the machined surface quality of powder metallurgy nickel-based superalloy FGH96(similar to Rene88DT)and the grinding characteristics of brown alumina(BA)and microcrystalline alumina(MA)abrasive wheels were comparatively analyzed during creep feed grinding.The infuences of the grinding parameters(abrasive wheel speed,workpiece infeed speed,and depth of cut)on the grinding force,grinding temperature,surface roughness,surface morphology,tool wear,and grinding ratio were analyzed comprehensively.The experimental results showed that there was no significant difference in terms of the machined surface quality and grinding characteristics of FGH96 during grinding with the two types of abrasive wheels.This was mainly because the grinding advantages of the MA wheel were weakened for the difficult-to-cut FGH96 material.Moreover,both the BA and MA abrasive wheeIs exhibited severe tool wear in the form of wheel clogging and workpiece material adhesion.Finally,an analytical model for prediction of the grinding ratio was established by combining the tool wear volume,grinding force,and grinding length.The acceptable errors between the predicted and experimental grinding ratios(ranging from 0.6 to 1.8)were 7.56%and 6.31%for the BA and MA abrasive wheels,respectively.This model can be used to evaluate quantitatively the grinding performance of an alumina abrasive wheel,and is therefore helpful for optimizing the grinding parameters in the creep feed grinding process.
文摘As is known to all, grinding force is one of the most important parameters to evaluate the whole process of grinding. Generally, the grinding force is resolved to three component forces, namely, normal grinding force F n, tangential grinding force F t and a component force acting along the direction of longitudinal feed which is usually neglected because of insignificance. The normal grinding force F n has influence upon surface deformation and roughness of workpiece, while the tangential grinding force F t mainly affect power consumption and service life of grinding wheel. In order to study deep into the process of the unsteady state grinding, we set up a measurement system to monitor the change of grinding force during the course of grinding and try to find some difference in the change of grinding force between the steady state grinding and unsteady state grinding. In the test, the normal and tangential grinding forces, F n and F t were measured by using a set of equipments including sensor, amplifier, oscilloscope and computer monitor. From the results, we can conclude that: 1) In the unsteady state grinding process, the values of the grinding forces are much lower than those of the steady state grinding process and the grinding force ratio showed a nonlinear fluctuation. 2) The tendency of the grinding forces in the process of the unsteady state grinding proved the existence of the cutting and micro-cutting actions. 3) Because the grinding force signals of the unsteady state grinding are much weaker than those of the steady state grinding, to obtain accurate value of the grinding forces, wave filtering is needed to be done. The whole process to filter the perturbation wave can be separated into three steps in order, changing the grinding force signals from analog signals into digital signals, FFT (fast Fourier transform) treatment to the digital signals, and IFFT(inversion fast Fourier transform) treatment to the digital signals after spectrum limitation.
文摘In conventional grinding theory, it is obvious that there must be a very high hardness difference between grains of the grinding wheel and workpieces. The best grinding wheels are those giving the lowest "natural limiting surface roughness" while cutting at appreciable plunge velocities. With the development of new materials and new machining processes, conventional theories of grinding techniques are no longer suitable to explain many phenomena in the course of grinding procedures. In dealing with precision or ultra-precision grinding processes of advanced ceramics, many results of experiments and practical production have shown that grinding with super hard materials wheels is not the only method to machine advanced ceramics. This paper is intended to propose a new grinding theory named as unsteady-state grinding technique evolved from some phenomena that can not be explained by conventional grinding theory. Unsteady-state grinding technique means the technique which can make the surface roughness of the materials, especially hard and brittle, be up to the standard of ultra-precision machining by utilizing common wheels characteristic of inferior self-sharpening and wear-resistance. In the process of machining, the common wheel need to be redressed about 3~5 times and the time between two redressings is about 3~5 minutes. As a validation of the new grinding technology, experimental work was performed to prove the existence of the unsteady state in the process of ultra-precision grinding with common abrasive wheel-pink fused alumina wheel. From the results of the observation of the wheel topography, the whole grinding process in unsteady state was separated into three stages namely cutting by grains peaks, micro-cutting by micro edges of the broken grains and rubbing without material removal, which is different from conventional grinding theory. For the difference of hardness between grinding wheel and workpiece material is not so apparent, some people have doubts about whether the cutting especially micro-cutting actions exist in the process of unsteady state grinding. By utilizing the common abrasive wheel newly redressed to grind the finished surface of silicon nitride glut and comparing the finished surface with the damaged surface in SEM pattern and surface roughness, the existence of cutting and micro- cutting actions in the unsteady state grinding process was confirmed.
基金the National Natural Science Foundation of China(Nos.51921003 and 51775275)the Major Special Projects of Aero-engine and Gas Turbine of China(2017-VII-0002-0095)+1 种基金the Six Talents Summit Project in Jiangsu Province of China(No.JXQC-002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX180256)。
文摘This paper evaluates the performance of creep feed grindingγ-TiAl intermetallic(Ti-45 Al-2 Mn-2 Nb)using electroplated diamond wheels.Firstly,a comparative analysis with the grinding results by using electroplated CBN wheels was conducted,mainly involving abrasive wheel wear behavior and maximum material removal rate below surface burn limit.It was found that the diamond wheel would produce much better grinding results including lower wheel wear rate and higher maximum material removal rate.Then the surface integrity obtained at different level of material removal rate was characterized with the utilization of the diamond wheel.The poor ductility of thisγ-TiAl intermetallic material was found to have a marginal effect on the surface integrity,as no severe surface defects such as material pullout were generated during the stable wheel wear stage.For the involved operating parameters,a deformation layer was produced with~10μm or more in thickness depending on the material removal rate used.Meanwhile,a work-hardened layer extending to more than 100μm was produced with a maximum microhardness of above 520 HV0.05(bulk value 360 HV0.05).The residual stress remained compressive,with a value of above-100 MPa and even up to-500 MPa for an elevated material removal rate.Shearing chip was the main chip type,indicating good wheel sharpness in the grinding process.
基金financially supported by the National Natural Science Foundation of China (Nos. 51921003 and 51775275)Major Special Projects of Aero-engine and Gas Turbine (No. 2017-Ⅶ-0002-0095)+2 种基金National Key Laboratory of Science and Technology on Helicopter Transmission (Nanjing University of Aeronautics and Astronautics) (No. HTL-A-20G01)Interdisciplinary Innovation Fundation for Graduates, (Nanjing University of Aeronautics and Astronautics, No. KXKCXJJ202006)the Project Funded by China Postdoctoral Science Foundation (No. 2020TQ0149)
文摘K444 nickel-based superalloy is an important material to manufacture the gas turbine due to its excellent mechanical properties at high temperatures and corrosion resistance.Currently,grinding is the mostly used method for the surface finish of the K444 alloy components.However,few studies worked on the effects of the abrasive tool wear on the ground surface characteristics and corrosion properties of K444 alloy.This study uses two different-type alumina abrasive tools,i.e.,white alumina(WA)and microcrystalline alumina(MA)wheels,to grind the K444 alloy.The influence of the alumina abrasive tool wear on ground surface characteristics and corrosion resistance performance are investigated.It is discovered that the MA wheel presents a slighter wheel wear and higher self-sharpening than the WA wheel.Compared to the WA wheel,the MA wheel has less material adhesion,which leads to a better surface finish.In the corrosion testing,the maximum corrosion depth is 80μm in the surface ground by the MA wheel but 100μm in the surface ground by the WA wheel,which demonstrates that the MA wheel grinding benefits the surface corrosion resistance of K444 alloy.Therefore,this study could provide a guide to selecting the abrasive tools and optimizing the grinding process of the K444 alloy.
基金supported by the National Natural Science Foundation of China (Nos.52305477,52375447,52305474)Major Special Projects of Aero-engine and Gas Turbine (No.2017-VII-0002-0095)+4 种基金the Special Fund of Taishan Scholars Project (No.tsqn202211179)the Youth Talent Promotion Project in Shandong (No.SDAST2021qt12)the Natural Science Foundation of Shandong Province (Nos.ZR2023QE057,ZR2022QE028,ZR2021QE116,and ZR2020KE027)Qingdao Science and Technology Planning Park Cultivation Plan (No.23-1-5-yqpy-17-qy)the Natural Science Foundation of Jiangsu Province (No.BK20210407).
文摘The machining surface integrity of aero-engine turbine disc slots has a significant impact on their fatigue life and service performance,and achieving efficiency and high-precision machining is still a great challenge.The high machining requirements of future aeroengine turbine disc slots will be difficult to satisfy using the broaching method.In addition,existing methods of slot machin-ing face difficulties in ensuring surface integrity.This study explored a cup shaped electroplated Cubic Boron Nitride(CBN)abrasive wheel for profile grinding the turbine disc slots of FGH96 powder metallurgy superalloy.The matrix structure of the cup shaped abrasive wheel was designed and verified.A profile grinding experiment was conducted for fir-tree slots on a five-axis machining center.The accuracy and the surface integrity were analyzed.Results show that the key dimension detection results of the slots were within the allowable tolerance range.Meanwhile,an average sur-face roughness Ra of 0.55μm was achieved,the residual stress was compressive,the plastic defor-mation layer thickness was less than 5μm,and the hardening layer thickness was less than 20μm.The research findings provide a new approach to machining the slots of aviation engine turbine discs and guidance for the high-quality processing of complex components.