期刊文献+
共找到210篇文章
< 1 2 11 >
每页显示 20 50 100
Biochar amendment modulates xylem ionic constituents and ABA signaling:Its implications in enhancing water-use efficiency of maize(Zea mays L.)under reduced irrigation regimes
1
作者 Heng Wan Zhenhua Wei +3 位作者 Chunshuo Liu Xin Yang Yaosheng Wang Fulai Liu 《Journal of Integrative Agriculture》 2025年第1期132-146,共15页
While biochar amendment enhances plant productivity and water-use efficiency(WUE),particularly under waterlimited conditions,the specific mechanisms driving these benefits remain unclear.Thus,the present study aims to... While biochar amendment enhances plant productivity and water-use efficiency(WUE),particularly under waterlimited conditions,the specific mechanisms driving these benefits remain unclear.Thus,the present study aims to elucidate the synergistic effects of biochar and reduced irrigation on maize(Zea mays L.)plants,focusing on xylem composition,root-to-shoot signaling,stomatal behavior,and WUE.Maize plants were cultivated in splitroot pots filled with clay loam soil,amended by either wheat-straw biochar(WSB)or softwood biochar(SWB)at 2%(w/w).Plants received full irrigation(FI),deficit irrigation(DI),or partial root-zone drying rrigation(PRD)from the 4-leaf to the grain-filling stage.Our results revealed that the WSB amendment significantly enhanced plant water status,biomass accumulation,and WUE under reduced irrigation,particularly when combined with PRD.Although reduced irrigation inhibited photosynthesis,it enhanced WUE by modulating stomatal morphology and conductance.Biochar amendment combined with reduced rrigation significantly increased xylem K^(+),Ca^(2+),Mg^(2+),NO_(3)^(-),Cl^(-),PO_(4)^(3-),and SO_(4)^(2-)-but decreased Na+,which in turn lowered xylem pH.Moreover,biochar amendment and especially WSB amendment further increased abscisic acid(ABA)contents in both leaf and xylem sap under reduced irrigation conditions due to changes in xylem ionic constituents and pH.The synergistic interactions between xylem components and ABA led to refined adjustments in stomatal size and density,thereby affecting stomatal conductance and ultimately improving the WUE of maize plants at different scales.The combined application of WSB and PRD can,therefore,emerge as a promising approach for improving the overall plant performance of maize plants with increased stomatal adaptations and WUE,especially under water-limited conditions. 展开更多
关键词 BIOCHAR alternate partial root-zone drying irrigation xylem composition abscisic acid stomatal morphology stomatalconductance
下载PDF
Rice ONAC016 promotes leaf senescence through abscisic acid signaling pathway involving OsNAP 被引量:1
2
作者 Eunji Gi Sung-Hwan Cho +2 位作者 Suk-Hwan Kim Kiyoon Kang Nam-Chon Paek 《The Crop Journal》 SCIE CSCD 2024年第3期709-720,共12页
Senescence-induced NAC(senNAC)TFs play a crucial role in senescence during the final stage of leaf development.In this study,we identified a rice senNAC,ONAC016,which functions as a positive regulator of leaf senescen... Senescence-induced NAC(senNAC)TFs play a crucial role in senescence during the final stage of leaf development.In this study,we identified a rice senNAC,ONAC016,which functions as a positive regulator of leaf senescence.The expression of ONAC016 increased rapidly in rice leaves during the progression of dark-induced and natural senescence.The onac016-1 knockout mutant showed a delayed leaf yellowing phenotype,whereas the overexpression of ONAC016 accelerated leaf senescence.Notably,ONAC016 expression was upregulated by abscisic acid(ABA),and thus detached leaves of the onac016-1 mutant remained green much longer under ABA treatment.Quantitative RT-PCR analysis showed that ONAC016 upregulates the genes associated with chlorophyll degradation,senescence,and ABA signaling.Yeast one-hybrid and dual-luciferase assays revealed that ONAC016 binds directly to the promoter regions of OsNAP,a key gene involved in chlorophyll degradation and ABA-induced senescence.Taken together,these results suggest that ONAC016 plays an important role in promoting leaf senescence through the ABA signaling pathway involving OsNAP. 展开更多
关键词 RICE ONAC016 OsNAP Leaf senescence Abscisic acid signaling
下载PDF
Abiotic stress treatment reveals expansin like A gene OfEXLA1 improving salt and drought tolerance of Osmanthus fragrans by responding to abscisic acid 被引量:1
3
作者 Bin Dong Qianqian Wang +7 位作者 Dan Zhou Yiguang Wang Yunfeng Miao Shiwei Zhong Qiu Fang Liyuan Yang Zhen Xiao Hongbo Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期573-585,共13页
Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental st... Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental stresses. Currently, limited information is available regarding the genetic analysis and functional identification of expansin genes in response to abiotic stress in sweet osmanthus. In this study, a total of 29 expansin genes were identified and divided into four groups by genome-wide analysis from the sweet osmanthus genome. Transcriptome and quantitative Real-time PCR analysis showed that the cell wall-localized protein expansin-like A(OfEXLA1) gene was significantly induced by salt and drought treatment. Histochemical GUS staining of transgenic Arabidopsis lines in which GUS activity was driven with the OfEXLA1 promoter, GUS activity was significantly induced by salt, drought, and exogenous abscisic acid(ABA). In yeast, we found OfEXLA1overexpression significantly improved the population of cells compared with wild-type strains after NaCl and polyethylene glycol(PEG)treatment. Additionally, OfEXLA1 overexpression not only promoted plant growth, but also improved the salt and drought tolerance in Arabidopsis. To gain insight into the role of ABA signaling in the regulation of OfEXLA1 improving abiotic tolerance in sweet osmanthus, four differentially expressed ABA Insensitive 5(ABI5)-like genes(OfABL4, OfABL5, OfABL7, and OfABL8) were identified from transcriptome, and dualluciferase(dual-LUC) and yeast one hybrid(Y1H) assay showed that OfABL4 and OfABL5 might bind to OfEXLA1 promoter to accumulate the OfEXLA1 expression by responding to ABA signaling to improve abiotic tolerance in sweet osmanthus. These results provide the information for understanding the molecular functions of expansin-like A gene and molecular breeding of sweet osmanthus in future. 展开更多
关键词 Osmanthus fragrans Abiotic tolerance EXPANSIN Abscisic acid
下载PDF
A novel ABA structural analogues enhanced plant resistance by inducing the plant immunity and inactivating ABA signaling pathway 被引量:1
4
作者 Yanke Jiang Yingzhe Yue +6 位作者 Zhaoxu Wang Chongchong Lu Zhizheng Wang Ziyi Yin Yang Li Ge-Fei Hao Xinhua Ding 《Advanced Agrochem》 2024年第1期64-73,共10页
Abscisic acid(ABA)is a phytohormone that not only important for plant growth,but also mediating the stress response.The roles of ABA in plant immunity are especially multifaceted.Recently,the ABA functional analogues ... Abscisic acid(ABA)is a phytohormone that not only important for plant growth,but also mediating the stress response.The roles of ABA in plant immunity are especially multifaceted.Recently,the ABA functional analogues are of great significance to promote its application.Here,we reported an ABA functional analogue named 167A.167A inhibits plant growth and seeds germinating of Arabidopsis.Meanwhile,the 167A enhanced the plant immunity,which is opposite of ABA.We further investigated the PTI-response after 167A treatment,and the results show that the ROS burst,callose deposition accumulate with 167A treatment.Moreover,167A also influence the degree of stomal closed.RNA-seq assays show that the 167A down-regulated the ABA associated genes and upregulated the JA/SA/ET associated genes.Through genetic analysis,the 167A modulating the plant resistance through the PYR/PYL Receptors.Together,these results demonstrate that a novel ABA analogue 167A positive regulated plant immunity and has great potential for agricultural applications. 展开更多
关键词 Abscisic acid Structural analogues Plant immunity PYR1/PYL receptors
下载PDF
Ameliorative Effects of Paclobutrazol via Physio-Biochemical and Molecular Manifestation in Rice under Water Deficit Stress
5
作者 Chirag MAHESHWARI Nitin Kumar GARG +1 位作者 Archana SINGH Aruna TYAGI 《Rice science》 SCIE CSCD 2024年第5期603-616,I0065,共15页
To comprehensively explore the physio-biochemical and molecular changes of paclobutrazol(PBZ) at the ideal dose under water deficit stress(WDS) conditions, we investigated the effects of 100 mg/kg PBZ applied via dren... To comprehensively explore the physio-biochemical and molecular changes of paclobutrazol(PBZ) at the ideal dose under water deficit stress(WDS) conditions, we investigated the effects of 100 mg/kg PBZ applied via drenching on various physio-biochemical and molecular parameters in three rice varieties(N22, IR64, and IR64 DTY1.1) under both mild [75%-80% relative water content(RWC)] and severe(60%-65% RWC) WDS conditions. The results showed that PBZ treatment positively influenced the physio-biochemical parameters, significantly increasing dry matter(16.27%-61.91%), RWC(6.48%-16.34%), membrane stability index(4.37%-10.35%), and total chlorophyll content(8.97%-29.09%) in the rice varieties under both mild and severe WDS. Moreover, PBZ treatment reduced drought susceptibility(0.83-0.95) and enhanced drought tolerance efficiency(60.92%-86.78%), indicating its potential as a stress-mitigating agent. Global methylation analysis revealed changes in DNA methylation patterns, indicating the regulatory influence of PBZ on gene expression. The expression analysis of genes involved in the diversification of geranylgeranyl pyrophosphate towards the biosynthesis of abscisic acid, gibberellin acid, and chlorophyll showed alterations in their expression levels, suggesting the involvement of PBZ in the isoprenoid pathway. Overall, this study provides valuable insights into the potential mechanisms by which PBZ modulates physiological and molecular responses in rice plants under WDS. The findings highlight the importance of PBZ as a promising agent for enhancing drought tolerance in rice and offer valuable information for future research in crop stress management. 展开更多
关键词 RICE PACLOBUTRAZOL drought stress abscisic acid gibberellic acid
下载PDF
Rice gene OsUGT75A regulates seedling emergence under deep-sowing conditions
6
作者 Jia Zhao Siyu Liu +5 位作者 Xiaoqian Zhao Zhibo Huang Shan Sun Zixuan Zeng Yongqi He Zhoufei Wang 《The Crop Journal》 SCIE CSCD 2024年第1期133-141,共9页
Poor seedling emergence is a challenge for direct seeding of rice under deep-sowing field conditions.Here we reveal that UDP-glucosyltransferase OsUGT75A promotes rice seedling emergence under deepsowing conditions by... Poor seedling emergence is a challenge for direct seeding of rice under deep-sowing field conditions.Here we reveal that UDP-glucosyltransferase OsUGT75A promotes rice seedling emergence under deepsowing conditions by increasing shoot length.Expression of OsUGT75A was higher in the middle regions of the shoot and in shoots under deep-sowing conditions.Levels of free abscisic acid(ABA)and jasmonates(JA)were higher in shoots of OsUGT75A mutants than in those of wild-type plants,and OsUGT75A mutants were more sensitive to ABA and JA treatments.Reduced shoot length was attributed to higher ABA INSENSITIVE 3(OsABI3)expression and lower JASMONATE-ZIM domain protein(OsJAZ)expression in shoots.Shoot extension by OsUGT75A is achieved mainly by promotion of cell elongation.An elite haplotype of OsUGT75A associated with increased shoot length was identified among indica rice accessions.OsUGT75A acts to increase seedling emergence under deep-sowing conditions. 展开更多
关键词 Abscisic acid Deep-sowing Jasmonic acid RICE Shoot length
下载PDF
Identification of P-type plasma membrane H^(+)-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination
7
作者 Bingli Jiang Wei Gao +8 位作者 Yating Jiang Shengnan Yan Jiajia Cao Litian Zhang Yue Zhang Jie Lu Chuanxi Ma Cheng Chang Haiping Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2164-2177,共14页
The P-type plasma membrane(PM)H^(+)-ATPases(HAs)are crucial for plant development,growth,and defense.The HAs have been thoroughly characterized in many different plants.However,despite their importance,the functions o... The P-type plasma membrane(PM)H^(+)-ATPases(HAs)are crucial for plant development,growth,and defense.The HAs have been thoroughly characterized in many different plants.However,despite their importance,the functions of HAs in germination and seed dormancy(SD)have not been validated in wheat.Here,we identified 28 TaHA genes(TaHA1-28)in common wheat,which were divided into five subfamilies.An examination of gene expression in strong-and weak-SD wheat varieties led to the discovery of six candidate genes(TaHA7/-12/-14/-16/-18/-20).Based on a single nucleotide polymorphism(SNP)mutation(C/T)in the TaHA7 coding region,a CAPS marker(HA7)was developed and validated in 168 wheat varieties and 171 Chinese mini-core collections that exhibit diverse germination and SD phenotypes.We further verified the roles of the two allelic variations of TaHA7 in germination and SD using wheat mutants mutagenized with ethyl methane sulphonate(EMS)in‘Jimai 22’and‘Jing 411’backgrounds,and in transgenic Arabidopsis lines.TaHA7 appears to regulate germination and SD by mediating gibberellic acid(GA)and abscisic acid(ABA)signaling,metabolism,and biosynthesis.The results presented here will enable future research regarding the TaHAs in wheat. 展开更多
关键词 wheat P-type plasma membrane H^(+)-ATPase seed dormancy abscisic acid GIBBERELLIN
下载PDF
Genome-wide association study reveals that JASMONATE ZIM-DOMAIN 5 regulates seed germination in rice
8
作者 Shan Sun Liling Peng +5 位作者 Qianqian Huang Zhibo Huang Chengjing Wang Jia Zhao Zhoufei Wang Yongqi He 《The Crop Journal》 SCIE CSCD 2024年第4期1001-1009,共9页
Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germinat... Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germination was identified in a genome-wide association study.The candidate gene JASMONATE ZIM-DOMAIN 5(OsJAZ5)of the QTL was verified that positively regulates seed germination.OsJAZ5 regulation of seed germination involves an OsABI3-mediated abscisic acid pathway.Overexpression of OsJAZ5 facilitated seed germination.The application of OsJAZ5 might be useful for increasing seed germination for rice direct seeding. 展开更多
关键词 Abscisic acid JASMONATE ZIM-DOMAIN Oryza sativa Seed germination
下载PDF
Overexpression of PbrGA2ox1 enhances pear drought tolerance through the regulation of GA_(3)-inhibited reactive oxygen species detoxification and abscisic acid signaling
9
作者 Guoling Guo Haiyan Zhang +10 位作者 Weiyu Dong Bo Xu Youyu Wang Qingchen Zhao Lun Liu Xiaomei Tang Li Liu Zhenfeng Ye Wei Heng Liwu Zhu Bing Jia 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期2989-3011,共23页
Drought stress is a devastating natural disaster driven by the continuing intensification of global warming,which seriously threatens the productivity and quality of several horticultural crops,including pear.Gibberel... Drought stress is a devastating natural disaster driven by the continuing intensification of global warming,which seriously threatens the productivity and quality of several horticultural crops,including pear.Gibberellins(GAs)play crucial roles in plant growth,development,and responses to drought stress.Previous studies have shown significant reductions of GA levels in plants under drought stress;however,our understanding of the intrinsic regulation mechanisms of GA-mediated drought stress in pear remains very limited.Here,we show that drought stress can impair the accumulation of bioactive GAs(BGAs),and subsequently identified PbrGA2ox1 as a chloroplast-localized GA deactivation gene.This gene was significantly induced by drought stress and abscisic acid(ABA)treatment,but was suppressed by GA_(3)treatment.PbrGA2ox1-overexpressing transgenic tobacco plants(Nicotiana benthamiana)exhibited enhanced tolerance to dehydration and drought stresses,whereas knock-down of PbrGA2ox1 in pear(Pyrus betulaefolia)by virus-induced gene silencing led to elevated drought sensitivity.Transgenic plants were hypersensitive to ABA,and had a lower BGAs content,enhanced reactive oxygen species(ROS)scavenging ability,and augmented ABA accumulation and signaling under drought stress compared to wild-type plants.However,the opposite effects were observed with PbrGA2ox1 silencing in pear.Moreover,exogenous GA_(3)treatment aggravated the ROS toxic effect and restrained ABA synthesis and signaling,resulting in the compromised drought tolerance of pear.In summary,our results shed light on the mechanism by which BGAs are eliminated in pear leaves under drought stress,providing further insights into the mechanism regulating the effects of GA on the drought tolerance of plants. 展开更多
关键词 PEAR GIBBERELLIN drought stress PbrGA2ox1 reactive oxygen species abscisic acid
下载PDF
Physiological and transcriptome analyses of Chinese cabbage in response to drought stress
10
作者 Lin Chen Chao Li +7 位作者 Jiahao Zhang Zongrui Li Qi Zeng Qingguo Sun Xiaowu Wang Limin Zhao Lugang Zhang Baohua Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2255-2269,共15页
Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.To explore the molecular mechanisms underlying the response to drought,we performed a transcriptome anal... Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.To explore the molecular mechanisms underlying the response to drought,we performed a transcriptome analysis of drought-tolerant and-sensitive Chinese cabbage genotypes under drought stress,and uncovered core drought-responsive genes and key signaling pathways.A co-expression network was constructed by a weighted gene coexpression network analysis(WGCNA)and candidate hub genes involved in drought tolerance were identified.Furthermore,abscisic acid(ABA)biosynthesis and signaling pathways and their drought responses in Chinese cabbage leaves were systemically explored.We also found that drought treatment increased the antioxidant enzyme activities and glucosinolate contents significantly.These results substantially enhance our understanding of the molecular mechanisms underlying drought responses in Chinese cabbage. 展开更多
关键词 Chinese cabbage drought stress abscisic acid weighted gene co-expression network analysis GLUCOSINOLATE
下载PDF
Melatonin Alleviates Abscisic Acid Deficiency Inhibition on Photosynthesis and Antioxidant Systems in Rice under Salt Stress
11
作者 Feiyu Yan Xin Chen +7 位作者 Zhenzhen Wang Yuxuan Xia Dehui Zheng Sirui Xue Hongliang Zhao Zhiwei Huang Yuan Niu Guoliang Zhang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1421-1440,共20页
Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study inves... Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study investigated the endogenous levels of melatonin and abscisic acid in rice by using exogenous melatonin,abscisic acid,and their synthetic inhibitors,and examined their interactions under salt stress.The research results indicate that melatonin and abscisic acid can improve rice salt tolerance.Melatonin alleviated the salt sensitivity caused by abscisic acid deficiency,increased antioxidant enzyme activity and antioxidant content in rice treated with abscisic acid synth-esis inhibitors,and reduced total reactive oxygen species content and thiobarbituric acid reactive substance accu-mulation.Melatonin also increased the activity of key photosynthetic enzymes and the content of photosynthetic pigments,maintaining the parameters of photosynthetic gas exchange and chlorophyllfluorescence.In summary,melatonin alleviated the effects of abscisic acid deficiency on photosynthesis and antioxidant systems in rice and improved salt tolerance.This study is beneficial for expanding the understanding of melatonin regulation of crop salt tolerance. 展开更多
关键词 MELATONIN abscisic acid salt stress RICE PHOTOSYNTHESIS antioxidant system
下载PDF
VPD modifies CO_(2) fertilization effect on tomato plants via abscisic acid and jasmonic acid signaling pathways
12
作者 Dalong Zhang Huihua Yang +5 位作者 Xiaolu Chen Yan Li Yunzhou Li Hongye Liu Xulin Wu Min Wei 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第5期1165-1176,共12页
Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization be... Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization being modulated by vapor pressure deficit(VPD),the underlying mechanism is highly uncertain.In the present study,the potential roles of hormones in determining CO_(2)fertilization effects under contrasting high and low VPD conditions were investigated by integrated physiological and transcriptomic analyses.Beneficial CO_(2)fertilization effects were offset under high VPD conditions and were constrained by plant water stress and photosynthetic CO_(2)utilization.High VPD induced a large passive water driving force,which disrupted the water balance and consequently caused plant water deficit.Leaf water potential,turgor pressure,and hydraulic conductance declined under high VPD stress.The physiological evidence combined with transcriptomic analyses demonstrated that abscisic acid(ABA)and jasmonic acid(JA)potentially acted as drought-signaling molecules in response to high VPD stress.Increased foliar ABA and JA content triggered stomatal closure to prevent excessive water loss under high VPD stress,which simultaneously increased the diffusion resistance for CO_(2)uptake from atmosphere to leaf intercellular space.High VPD also significantly increased mesophyll resistance for CO_(2)transport from stomatal cavity to fixation site inside chloroplast.The chloroplast“sink”CO_(2)availability was constrained by stomatal and mesophyll resistance under high VPD stress,despite the atmospheric“source”CO_(2)concentration being elevated.Thus,ABA-and JA-mediated drought-resistant mechanisms potentially modified the beneficial effect of CO_(2)fertilization on photosynthesis,plant growth,and yield productivity.This study provides valuable information for improving the utilization efficiency of CO_(2)fertilization and a better understanding of the physiological processes. 展开更多
关键词 Abscisic acid CO_(2) fertilization Jasmonic acid Mesophyll conductance Stomatal conductance Vapor pressure deficit
下载PDF
Effects of Abscisic Acid on Cold Resistance in Digitaria sanguinalis(L.)Scop.
13
作者 Rongbo ZHOU Yihong HU +3 位作者 Li ZHOU Jie PENG Fan XIE Chenzhong JIN 《Agricultural Biotechnology》 2024年第1期15-16,19,共3页
[Objectives]This study was conducted to detect the protective effect of abscisic acid on chilling injury of Digitaria sanguinalis(L.)Scop,and whether this effect is related to antioxidant enzymes and osmotic adjustmen... [Objectives]This study was conducted to detect the protective effect of abscisic acid on chilling injury of Digitaria sanguinalis(L.)Scop,and whether this effect is related to antioxidant enzymes and osmotic adjustment.[Methods]D.sanguinalis plants were sprayed with abscisic acid solution,and exposed to cold stress at 15℃for 3 d after one day and then at 5℃for 25 to 30 d in a growth chamber.The changes of plant osmotic potential under this treatment were detected.[Results]Under low temperature stress,the osmotic potential of plants in the abscisic acid treatment and the control increased,but the osmotic potential level of the abscisic acid treatment plants was lower.The SOD activity of plants in the ABA treatment and the control decreased under low temperature stress.Under low temperature stress,the activity of catalase and peroxidase in ABA-treated plants was higher than that in control plants.[Conclusions]This study provides a theoretical basis for the impact of abscisic acid on the physiological response of D.sanguinalis to cold injury. 展开更多
关键词 Digitaria sanguinalis Abscisic acid CAT POD ROS SOD
下载PDF
Development of abscisic acid receptor agonists/antagonists and their application prospect in agriculture:An overview
14
作者 Xianjun Tang Xiaobin Li Zhaohai Qin 《Advanced Agrochem》 2024年第1期9-25,共17页
Abscisic acid(ABA),a plant hormone,is crucial for regulating various physiological and developmental processes in plants,including adaptation to biotic and abiotic stresses.Recent advancements have significantly contr... Abscisic acid(ABA),a plant hormone,is crucial for regulating various physiological and developmental processes in plants,including adaptation to biotic and abiotic stresses.Recent advancements have significantly contributed to our understanding of ABA's biosynthetic pathway,transport,signaling pathway,and metabolism.To overcome the limitations of natural ABA,scientists have developed broad-spectrum and highly active agonists of ABA receptors.However,the practical application of these receptor agonists as agrochemicals still faces several challenges.On the other hand,some ABA antagonists have also been developed to differentiate the functional differences among various receptors more accurately.This can help design ABA agonists that can selectively activate specific physiological responses,thereby eliminating the undesired physiological effects induced by ABA.This paper aims to provide a comprehensive overview of the current ABA receptor agonists and antagonists to assist in developing novel ABA functional analogs with improved efficacy and simpler chemical structures that are suitable for agricultural applications. 展开更多
关键词 Abscisic acid(ABA) ABA receptors Receptor agonists Receptor antagonists
下载PDF
Signal Transduction from Water Stress Perception to ABA Accumulation 被引量:12
15
作者 贾文锁 邢宇 +1 位作者 卢从明 张建华 《Acta Botanica Sinica》 CSCD 2002年第10期1135-1141,共7页
To cope with unpredictably environmental perturbations and sometimes stresses, plants have evolved with some mechanisms so that these developing stresses can be sensitively perceived and the physiology can be rapidl... To cope with unpredictably environmental perturbations and sometimes stresses, plants have evolved with some mechanisms so that these developing stresses can be sensitively perceived and the physiology can be rapidly regulated. Such perception and regulation can be a kind of feed_forward mechanism and may involve many biochemical and physiological processes and/or the expression of many genes. Although many dehydration_responsive genes have been identified, much fewer of their functions have been known. Such stress_ induced responses should include the initial perception of the dehydration signal, then the complicated signal transduction and cellular transmission until to the final gene activation or expression. As an important plant stress hormone abscisic acid (ABA) mediates many such responses. We believe that starting from the initial perception of dehydration to the gene expression leading to the stress_induced ABA biosynthesis is the most important stress signal transduction pathway among all the plant responses to stresses. Identification of the genes involved and understanding their roles during stress perception and physiological regulation shall be the most important and interesting research field in the coming years. 展开更多
关键词 water stress PERCEPTION TRANSDUCTION abscisic acid (ABA)
下载PDF
Effects of ABA on Photosynthetic Characteristics of Pods and Yield of Brassica napus 被引量:4
16
作者 李俊 张春雷 +3 位作者 马霓 余利平 晁赢 李玲 《Agricultural Science & Technology》 CAS 2012年第4期760-762,903,共4页
[Objective] The aim was to evaluate the effects of different concentrations of ABA on photosynthetic characteristics of pods and yield of Brassica napus and analyze the relationships between ABA concentration and yiel... [Objective] The aim was to evaluate the effects of different concentrations of ABA on photosynthetic characteristics of pods and yield of Brassica napus and analyze the relationships between ABA concentration and yield components, to provide theoretical basis for cultivation of high-yield rapeseed. [Method] At the end of flowering stage, the rape plants were separately sprayed with 1, 2, 100 and 200μmol/L of ABA; photosynthetic parameters, water use efficiency (WUE), yield and yield components of the rape plants were investigated 0, 5, 10 and 15 d later, respectively. [Result] ABA treatment with different concentrations significantly changed pod photosynthetic parameters and yield components of rapeseed. Low concentra- tions of ABA could improve pod's net photosynthetic rate and yield components while high concentrations had the contrary effect. [Conclusion] Whether ABA func- tioned in inhibiting or promoting role might depend on the interaction between endogenous hormone levels and exogenous ABA concentration. Improvement of WUE would be the main reason for yield increasing. 展开更多
关键词 Brassica napus L POD Abscisic acid (ABA) Photosynthetic characteristics YIELD
下载PDF
Involvement of Calcium dependent Protein Kinases in ABA regulation of Stomatal Movement 被引量:9
17
作者 王喜庆 武维华 《Acta Botanica Sinica》 CSCD 1999年第5期556-559,共4页
Patch clamp techniques were employed to investigate if calcium dependent protein kinases (CDPKs) be involved in the signal transduction pathways of stomatal movement regulation by the phytohormone abscisic acid (ABA... Patch clamp techniques were employed to investigate if calcium dependent protein kinases (CDPKs) be involved in the signal transduction pathways of stomatal movement regulation by the phytohormone abscisic acid (ABA) in Vicia faba. Stomatal opening was completely inhibited by external application of 1 μmol/L ABA, and such ABA inhibition was significantly reversed by the addition of CDPK inhibitor trifluoperazine (TFP). The inward whole cell K + currents were inhibited by 60% in the presence of 1 μmol/L intracellular ABA, and this inhibition was completely abolished by the addition of CDPK competitive substrate histone Ⅲ S. The results suggest that CDPKs may be involved in the signal transduction cascades of ABA regulated stomatal movements. 展开更多
关键词 Calcium dependent protein kinases (CDPKs) K + channels Abscisic acid Stomatal guard cells
下载PDF
Effects of Water Deficit and Increased Nitrogen Application in the Late Growth Stage on Physiological Characters of Anti-aging of Leaves in Different Hybrid Rice Varieties 被引量:1
18
作者 李木英 王竹青 +3 位作者 曾蕾 石庆华 潘晓华 谭雪明 《Agricultural Science & Technology》 CAS 2012年第11期2311-2322,共12页
[Objective] This study aimed to explore the effects of water and fertilizer regulation on the function of leaves in the filling stage. [Method] Six hybrid rice vari- eties including prematurely aged types and non-prem... [Objective] This study aimed to explore the effects of water and fertilizer regulation on the function of leaves in the filling stage. [Method] Six hybrid rice vari- eties including prematurely aged types and non-prematurely aged ones were selected as experimental materials. Limiting water treatment (with soil water potential of about -25 kpa) and increasing nitrogen treatment (additional 10% of granular nitrogen fertiliz- er in addition to limiting water treatment) were applied after heading to analyse the rates of aging and physiological responses of anti-aging in different hybrid rice vari- eties under water deficit and increased nitrogen conditions taking regular water and fertilizer as control. [Result] The results showed that water deficit accelerated the leaf senescence, and prematurely aged types-'Zhongyou838', 'Tianyou998' and 'Long- ping601 '-were more markedly affected by water deficit, of which the rates of chloro- phyll degradation were 6%-8% higher compared to that in another three hybrids. In- creasing nitrogen treatment raised chlorophyll content and slowed down its degrada- tion. Water deficit caused the increase of abscisic acid (ABA) content to obviously varying degrees in leaves of six hybried rice varieties. Responses of ABA content in six hybried rice varieties to increased nitrogen fertilizer were not consistent. Except in 'Zhongyou838', ABA content in the other five hybrids had varying degrees of in- crease. The responses of the activity of antioxidant enzymes in different hybried rice varieties were inconsistent. In response to increased nitrogen fertilizer in combination with water deficit, the activity of each antioxidant enzyme changed differently. Water deficit enhanced the accumulation of malondialdehyde (MDA) in leaves of each hybrid rice. The correlation analysis showed that chlorophyll content was extremely signifi- cantly positively correlated to the resistance of each antioxidant enzyme; SOD activity in leaves also positively related to ABA content. [Conclusion] The rate of leaf aging, physiological activity of anti-aging, and response to water deficit varied in different hy- bried rice varieties. The activity of antioxidant enzymes were not all induced to improve by ABA. SOD activity can be an indicator of resistance to stress. Increasing nitrogen ap- plication significantly postponed leave senescence in the late growth stage of rice. 展开更多
关键词 Hybrid rice Leaf senescence Abscisic acid(ABA) Antioxidant enzymes
下载PDF
In Vivo Tissue-dependent Abscisic Acid Specific-binding Proteins with High Affinity in Cytosol of Developing Apple Fruits 被引量:1
19
作者 张大鹏 陈尚武 《Acta Botanica Sinica》 CSCD 2001年第11期1115-1122,共8页
The in vivo highly tissue-dependent abscisic acid (ABA) specific-binding sites localized in cytosol were identified and characterized in the flesh of developing apple ( Malus pumila L. cv. Starkrimon) fruits. ABA bind... The in vivo highly tissue-dependent abscisic acid (ABA) specific-binding sites localized in cytosol were identified and characterized in the flesh of developing apple ( Malus pumila L. cv. Starkrimon) fruits. ABA binding activity was scarcely detectable in the microsomes and the cytosolic fraction isolated from the freshly harvested fruits via an in vitro ABA binding incubation of the subcellular fractions. If, however, instead that the subcellular fractions were in vitro incubated in H-3-ABA binding medium, the flesh tissue discs were directly in vivo incubated in H-3-ABA binding medium, a high ABA binding activity to the cytosolic fraction isolated from these tissue discs was detected. The in vivo ABA binding capacity of the cytosolic fraction was lost if the tissue discs had been pretreated with boiling water, indicating that the ABA binding needs a living state of tissue. The in vivo tissue-dependent binding sites were shown to possess protein nature with both active serine residua and thiol-group of cysteine residua in their functional binding center. The ABA binding of the in vivo tissue-dependent ABA binding sites to the cytosolic fraction was shown to be saturable, reversible, and of high affinity. The scatchard plotting gave evidence of two different classes of ABA binding proteins, one with a higher affinity ( Kd = 2.9 nmol/L) and the other with lower affinity ( Kd = 71.4 nmol/L). Phaseic acid, 2-trans-4-trans-ABA or cis-trans-(-)-ABA had substantially no affinity to the binding proteins, indicating their stereo-specificity to bind physiologically active ABA. The time course, pH- and temperature-dependence of the in vivo tissue-dependent binding proteins were determined. It is hypothesized that the detected ABA-binding proteins may be putative ABA-receptors that mediate ABA signals during fruit development. 展开更多
关键词 abscisic acid ABA-binding protein apple fruit
下载PDF
Effects of Exogenous Abscisic Acid and Water Stress on the Growth Response of Subterranean Clover of Different Genotypes
20
作者 许兴 郑国琦 +1 位作者 邓西平 Hipolito MEDRANO 《Acta Botanica Sinica》 CSCD 2002年第12期1425-1431,共7页
The response of subterranean clover ( Trifolium subterraneum L.) to different abscisic acid (ABA) concentrations (10 -6 , 10 -5 , 10 -4 mol/L) in nutrient solution and to water stress were studied in g... The response of subterranean clover ( Trifolium subterraneum L.) to different abscisic acid (ABA) concentrations (10 -6 , 10 -5 , 10 -4 mol/L) in nutrient solution and to water stress were studied in growth room. Six cultivars of contrasting yield capacity were compared. Plants remained growing in Hoagland solution or pots until at least four full_developed leaves appeared. The ABA was then applied and the fresh weight, leaf number and length of the largest root were measured at 1, 4, 7 and 11 d after ABA treatment. The above parameters were also measured at 15 d under water stress. In all the tested genotypes ABA caused similar reduction in these growth parameters, as well as a significant decrease of leaf water potential which was dependent on ABA concentration. The average growth reduction after 11 d under 10 -4 mol/L ABA coincided with the range of these crops under water stress in pot experiments. On average of the different genotypes, leaf number, area of full_developed leaf and the dry weight per plant decreased by about 50% whereas the root/shoot ratio increased by 80%.The genotype variation and ranking for this treatment were rather similar to the same genotypes in pot experiments. The genotypes, Clare, Nuba and Seaton Park, showed the best results under both control and ABA treated conditions and water stress conditions. The similarity between the response to ABA in nutrient solution and to water stress opens the possibility to use this approach as a way to quantify the drought resistance of subterranean clover genotypes. 展开更多
关键词 Trifolium subterraneum water stress abscisic acid nutrient solution GROWTH
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部