Saline–alkaline(SA) stress is characterized by high salinity and high alkalinity(high p H), which severely inhibit plant growth and cause huge losses in crop yields worldwide. Here we show that a moderate elevation o...Saline–alkaline(SA) stress is characterized by high salinity and high alkalinity(high p H), which severely inhibit plant growth and cause huge losses in crop yields worldwide. Here we show that a moderate elevation of endogenous abscisic acid(ABA) levels by RNAi-mediated suppression of Os ABA8 ox1(Os ABA8 ox1-kd), a key ABA catabolic gene, significantly increased tolerance to SA stress in rice plants. We produced Os ABA8 ox1-kd lines in two different japonica cultivars, Dongdao 4 and Nipponbare. Compared with nontransgenic control plants(WT), the Os ABA8 ox1-kd seedlings accumulated 25.9%–55.7% higher levels of endogenous ABA and exhibited reduced plasmalemma injury, ROS accumulation and Na;/K;ratio, and higher survival rates, under hydroponic alkaline conditions simulated by 10, 15, and 20 mmol L-1 of Na;CO;. In pot trials using SA field soils of different alkali levels(p H 7.59, 8.86, and 9.29), Os ABA8 ox1–kd plants showed markedly higher seedling survival rates and more vigorous plant growth, resulting in significantly higher yield components including panicle number(85.7%–128.6%), spikelets per panicle(36.9%–61.9%), branches(153.9%–236.7%), 1000–kernel weight(20.0%–28.6%), and percentage of filled spikelets(96.6%–1340.8%) at harvest time. Under severe SA soil conditions(p H = 9.29, EC = 834.4 μS cm-1),Os ABA8 ox1-kd lines showed an 194.5%–1090.8% increase in grain yield per plant relative to WT plants.These results suggest that suppression of Os ABA8 ox1 to increase endogenous ABA levels provides a new molecular approach for improving rice yield in SA paddies.展开更多
We successfully identified a novel and unique OsbZIP transcription factor,OsbZIP09,whose mutants exhibited longer seeds and less severe pre-harvest sprouting than the wild type,but shared similar germination rate as t...We successfully identified a novel and unique OsbZIP transcription factor,OsbZIP09,whose mutants exhibited longer seeds and less severe pre-harvest sprouting than the wild type,but shared similar germination rate as the wild type under normal germination conditions.The expression of OsbZIP09 was induced by abscisic acid(ABA)and declined as the germination process.As a nucleus-localized transcription factor,the conserved binding motif of OsbZIP09 was identified via DNA affinity purification sequencing technique.Further evidences indicated that OsbZIP09 directly enhanced the expression of ABA catabolism gene ABA8ox1,thus reducing ABA accumulation.In addition,OsbZIP09 also directly bound to the promoter of LEA3 gene to inhibit its expression,thus further alleviating the suppressive effect of ABA on seed germination.These results demonstrated that OsbZIP09 likely functions as a brake of the ABA pathway to attenuate the inhibitory effect of ABA on rice seed germination via dual strategies.展开更多
Starch is one of the richest natural polymers with low-cost,non-toxic and biodegradable,but is seldom directly used as corrosion inhibitor due to its poor inhibitive ability and low water solubility.To solve this prob...Starch is one of the richest natural polymers with low-cost,non-toxic and biodegradable,but is seldom directly used as corrosion inhibitor due to its poor inhibitive ability and low water solubility.To solve this problem,cassava starch-acryl amide graft copolymer(CS-AAGC)was prepared through grafting acryl amide(AA)with cassava starch(CS),and it was firstly examined as an efficient inhibitor for 1060 aluminum in 1.0 mol·L^(-1)H_(3)PO_(4) media.The adsorption behavior of CS-AAGC and its electrochemical mechanism were investigated by weight loss and electrochemical methods.Additionally,the inhibited aluminum surface was fully characterized by a series of SEM,AFM,contact angle measurements and XPS.Results confirm that CS-AAGC performs better inhibitive ability than CS,AA or CS/AA mixture,and the maximum inhibition efficiency of 1.0 g·L^(-1)CS-AAGC is 90.6%at 20℃.CS-AAGC acts as a mixed-type inhibitor while mainly retards the anodic reaction.EIS has three time constants,and the polarization resistance is significantly increased in the presence of CS-AAGC.The micrograph of inhibited aluminum surface is of hydrophobic nature with low surface roughness and little corrosion degree.展开更多
Fleshy fruit ripening is typically regulated by ethylene in climacteric fruits and abscisic acid(ABA)in non-climacteric fruits.Common fig(Ficus carica)shows a dual-ripening mechanism,which is not fully understood.Here...Fleshy fruit ripening is typically regulated by ethylene in climacteric fruits and abscisic acid(ABA)in non-climacteric fruits.Common fig(Ficus carica)shows a dual-ripening mechanism,which is not fully understood.Here,we detected separate peaks of ethylene and ABA in fig fruits at the onset-and onripening stages,in conjunction with a sharp rise in glucose and fructose contents.In a newly-designed split-fruit system,exogenous ethylene failed to rescue fluridone-inhibited fruit ripening,whereas exogenous ABA rescued 2-amino-ethoxy-vinyl glycine(AVG)-inhibited fruit ripening.Transcriptome analysis revealed changes in the expression of genes key to both ABA and ethylene biosynthesis and perception during fig fruit ripening.At the degreening stage,downregulation of FcACO2 or FcPYL8 retarded ripening,but downregulation of FcETR1/2 did not;unexpectedly,downregulation of FcAAO3 promoted ripening,but it inhibited ripening only before the de-greening stage.Furthermore,we detected an increase in ethylene emissions in the FcAAO3-RNAi ripening fruit and a decrease in ABA levels in the FcACO2-RNAi unripening fruit.Importantly,FcPYL8 can bind to ABA,suggesting that it functions as an ABA receptor.Our findings support the hypothesis that ethylene regulates the fig fruit ripening in an ABA-dependent manner.We propose a model for the role of the ABA-ethylene interaction in climacteric/non-climacteric processes.展开更多
The porous CeO2 flowerlike micro-nano spheres based materials were prepared to remove HCN effectively at lower temperature range.The CeO2 and a serious of porous flowerlike ceria based materials loaded with metal spec...The porous CeO2 flowerlike micro-nano spheres based materials were prepared to remove HCN effectively at lower temperature range.The CeO2 and a serious of porous flowerlike ceria based materials loaded with metal species including Cu,Ag,Ni,Co and Fe were synthesized by hydrothermal method and precipitation method respectively.The physicochemical properties were probed by means of XRD,H2-TPR,BET,SEM and XPS.The removal ability for 130 mg·m﹣3 HCN over CuO/CeO2 showed the highest activity,the breakthrough time of which was more than 70 min at the condition of 30℃,120,000 h-1 and b 5%(volume)H2O,owe to a higher relative atomic ratio of oxygen vacancies and Oβ,the stronger interaction between metal particle and support,the optimum redox properties.The reaction mechanism was speculated by detecting the reaction products selectivity at different reaction temperature.It was shown that the reaction system for removal of HCN over CuO/CeO2 catalytic material involved chemisorption,catalytic hydrolysis,catalytic oxidation as well as NH3-SCR reactions.展开更多
基金supported by National Key Research and Development Program of China(SQ2018YFD020224)Chinese Academy of Sciences STS Network Foundation(KFJ-SW-STS-141-01)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDA080X0X0X)the Foundation of Innovation team International Partner Program of Chinese Academy of Sciences(KZZD-EW-TZ-07-08)。
文摘Saline–alkaline(SA) stress is characterized by high salinity and high alkalinity(high p H), which severely inhibit plant growth and cause huge losses in crop yields worldwide. Here we show that a moderate elevation of endogenous abscisic acid(ABA) levels by RNAi-mediated suppression of Os ABA8 ox1(Os ABA8 ox1-kd), a key ABA catabolic gene, significantly increased tolerance to SA stress in rice plants. We produced Os ABA8 ox1-kd lines in two different japonica cultivars, Dongdao 4 and Nipponbare. Compared with nontransgenic control plants(WT), the Os ABA8 ox1-kd seedlings accumulated 25.9%–55.7% higher levels of endogenous ABA and exhibited reduced plasmalemma injury, ROS accumulation and Na;/K;ratio, and higher survival rates, under hydroponic alkaline conditions simulated by 10, 15, and 20 mmol L-1 of Na;CO;. In pot trials using SA field soils of different alkali levels(p H 7.59, 8.86, and 9.29), Os ABA8 ox1–kd plants showed markedly higher seedling survival rates and more vigorous plant growth, resulting in significantly higher yield components including panicle number(85.7%–128.6%), spikelets per panicle(36.9%–61.9%), branches(153.9%–236.7%), 1000–kernel weight(20.0%–28.6%), and percentage of filled spikelets(96.6%–1340.8%) at harvest time. Under severe SA soil conditions(p H = 9.29, EC = 834.4 μS cm-1),Os ABA8 ox1-kd lines showed an 194.5%–1090.8% increase in grain yield per plant relative to WT plants.These results suggest that suppression of Os ABA8 ox1 to increase endogenous ABA levels provides a new molecular approach for improving rice yield in SA paddies.
基金supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates,Science Fund for Distinguished Young Scholars of Jiangsu Province,China(Grant No.BK20200045)the Priority Academic Program Development of Jiangsu Higher Education Institutions Program,China.
文摘We successfully identified a novel and unique OsbZIP transcription factor,OsbZIP09,whose mutants exhibited longer seeds and less severe pre-harvest sprouting than the wild type,but shared similar germination rate as the wild type under normal germination conditions.The expression of OsbZIP09 was induced by abscisic acid(ABA)and declined as the germination process.As a nucleus-localized transcription factor,the conserved binding motif of OsbZIP09 was identified via DNA affinity purification sequencing technique.Further evidences indicated that OsbZIP09 directly enhanced the expression of ABA catabolism gene ABA8ox1,thus reducing ABA accumulation.In addition,OsbZIP09 also directly bound to the promoter of LEA3 gene to inhibit its expression,thus further alleviating the suppressive effect of ABA on seed germination.These results demonstrated that OsbZIP09 likely functions as a brake of the ABA pathway to attenuate the inhibitory effect of ABA on rice seed germination via dual strategies.
基金Funding support from the National Natural Science Foundation of China(51561027)Training Programs of Young and Middle Aged Academic and Technological Leaders in Yunnan Province(2015HB049,2017HB030)Special Project of''Top Young Talents”of Yunnan Ten Thousand Talents Plan(51900109)。
文摘Starch is one of the richest natural polymers with low-cost,non-toxic and biodegradable,but is seldom directly used as corrosion inhibitor due to its poor inhibitive ability and low water solubility.To solve this problem,cassava starch-acryl amide graft copolymer(CS-AAGC)was prepared through grafting acryl amide(AA)with cassava starch(CS),and it was firstly examined as an efficient inhibitor for 1060 aluminum in 1.0 mol·L^(-1)H_(3)PO_(4) media.The adsorption behavior of CS-AAGC and its electrochemical mechanism were investigated by weight loss and electrochemical methods.Additionally,the inhibited aluminum surface was fully characterized by a series of SEM,AFM,contact angle measurements and XPS.Results confirm that CS-AAGC performs better inhibitive ability than CS,AA or CS/AA mixture,and the maximum inhibition efficiency of 1.0 g·L^(-1)CS-AAGC is 90.6%at 20℃.CS-AAGC acts as a mixed-type inhibitor while mainly retards the anodic reaction.EIS has three time constants,and the polarization resistance is significantly increased in the presence of CS-AAGC.The micrograph of inhibited aluminum surface is of hydrophobic nature with low surface roughness and little corrosion degree.
基金supported by the National Natural Science Foundation of China(32030100 and 31672125)the Beijing Natural Science Foundation(6171001)Sichuan Lomon Biotechnology Co.Ltd。
文摘Fleshy fruit ripening is typically regulated by ethylene in climacteric fruits and abscisic acid(ABA)in non-climacteric fruits.Common fig(Ficus carica)shows a dual-ripening mechanism,which is not fully understood.Here,we detected separate peaks of ethylene and ABA in fig fruits at the onset-and onripening stages,in conjunction with a sharp rise in glucose and fructose contents.In a newly-designed split-fruit system,exogenous ethylene failed to rescue fluridone-inhibited fruit ripening,whereas exogenous ABA rescued 2-amino-ethoxy-vinyl glycine(AVG)-inhibited fruit ripening.Transcriptome analysis revealed changes in the expression of genes key to both ABA and ethylene biosynthesis and perception during fig fruit ripening.At the degreening stage,downregulation of FcACO2 or FcPYL8 retarded ripening,but downregulation of FcETR1/2 did not;unexpectedly,downregulation of FcAAO3 promoted ripening,but it inhibited ripening only before the de-greening stage.Furthermore,we detected an increase in ethylene emissions in the FcAAO3-RNAi ripening fruit and a decrease in ABA levels in the FcACO2-RNAi unripening fruit.Importantly,FcPYL8 can bind to ABA,suggesting that it functions as an ABA receptor.Our findings support the hypothesis that ethylene regulates the fig fruit ripening in an ABA-dependent manner.We propose a model for the role of the ABA-ethylene interaction in climacteric/non-climacteric processes.
基金supported by the Chinese Civil Air Defense Office([2014]No.251-61)the Military Scientific Research Program(Zhuangzong[2018]No.635)。
文摘The porous CeO2 flowerlike micro-nano spheres based materials were prepared to remove HCN effectively at lower temperature range.The CeO2 and a serious of porous flowerlike ceria based materials loaded with metal species including Cu,Ag,Ni,Co and Fe were synthesized by hydrothermal method and precipitation method respectively.The physicochemical properties were probed by means of XRD,H2-TPR,BET,SEM and XPS.The removal ability for 130 mg·m﹣3 HCN over CuO/CeO2 showed the highest activity,the breakthrough time of which was more than 70 min at the condition of 30℃,120,000 h-1 and b 5%(volume)H2O,owe to a higher relative atomic ratio of oxygen vacancies and Oβ,the stronger interaction between metal particle and support,the optimum redox properties.The reaction mechanism was speculated by detecting the reaction products selectivity at different reaction temperature.It was shown that the reaction system for removal of HCN over CuO/CeO2 catalytic material involved chemisorption,catalytic hydrolysis,catalytic oxidation as well as NH3-SCR reactions.