A three-wave interaction (3WI) code is developed to study the stimulated Raman scattering (SRS) in both absolute and convective regimes. In the simulations, the time and spatial evolutions of a plasma wave are des...A three-wave interaction (3WI) code is developed to study the stimulated Raman scattering (SRS) in both absolute and convective regimes. In the simulations, the time and spatial evolutions of a plasma wave are described by temporal growth rate and spatial factor, respectively. The spatial factors in different phases and different instability regimes are investigated. It is found that the spatial factor is caused by the finite velocity of the pump wave in the first phase and by damping in the last phase. With inclusion of the spatial factor, the temporal growth rate decreases and the threshold for SRS for a finite frequency mismatch increases. Meanwhile, the effects of wave frequency mismatch on the temporal growth rate are also discussed.展开更多
Three-wave resonant parametric decay instability of extraordinary wave decay into two upper hybrid waves in an inhomogeneous plasma is studied theoretically. Analytical expressions of the local absolute growth rate, c...Three-wave resonant parametric decay instability of extraordinary wave decay into two upper hybrid waves in an inhomogeneous plasma is studied theoretically. Analytical expressions of the local absolute growth rate, convective amplification factor and threshold intensity are obtained. The calculated results show that the effects of magnetic field and ky (ICy is the component of the wavenumber of upper hybrid wave perpendicular to pump wave k0) on the growth rate, amplification factor and threshold intensity are extremely dependent on their strength. The absolute growth rate and convective amplification factor increase with the plasma density while the threshold decreases. Moreover, the expression indicates that the inhomogeneity scale length of density and linear damping will reduce the convective amplification factor.展开更多
基金supported by Sci. & Tech.Funds of CAEP(Nos.2010A0102004 and 2010B0102018)National Natural Science Foundation of China(Nos.11075025,10975023,10935003,10835003)
文摘A three-wave interaction (3WI) code is developed to study the stimulated Raman scattering (SRS) in both absolute and convective regimes. In the simulations, the time and spatial evolutions of a plasma wave are described by temporal growth rate and spatial factor, respectively. The spatial factors in different phases and different instability regimes are investigated. It is found that the spatial factor is caused by the finite velocity of the pump wave in the first phase and by damping in the last phase. With inclusion of the spatial factor, the temporal growth rate decreases and the threshold for SRS for a finite frequency mismatch increases. Meanwhile, the effects of wave frequency mismatch on the temporal growth rate are also discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10990214 and 10775450the Ministry of Science and Technology of China under Grant No 2013GB112002
文摘Three-wave resonant parametric decay instability of extraordinary wave decay into two upper hybrid waves in an inhomogeneous plasma is studied theoretically. Analytical expressions of the local absolute growth rate, convective amplification factor and threshold intensity are obtained. The calculated results show that the effects of magnetic field and ky (ICy is the component of the wavenumber of upper hybrid wave perpendicular to pump wave k0) on the growth rate, amplification factor and threshold intensity are extremely dependent on their strength. The absolute growth rate and convective amplification factor increase with the plasma density while the threshold decreases. Moreover, the expression indicates that the inhomogeneity scale length of density and linear damping will reduce the convective amplification factor.