We have obtained the absolute proper motion of globular cluster M3 from measurements of 14 plates taken with the 40cm refractor at Sheshan station of Shanghai observatory, spanning epoch is about 80 years. The positio...We have obtained the absolute proper motion of globular cluster M3 from measurements of 14 plates taken with the 40cm refractor at Sheshan station of Shanghai observatory, spanning epoch is about 80 years. The positions and absolute proper motions of 24 stars in ACT catalogue are used as the reference frame. The reduction was made with the central overlapping principle. The absolute proper motions of 534 stars in the region of about 1° 5×1° 5 around the cluster M3 are determined. With the new data of proper motions, the membership probabilities of the stars are determined. The mean absolute proper motions for the cluster of -0 3±0 3 mas/yr in R.A. and -3 1±0 3 mas/yr in Dec. were obtained.Combining our results with the known distance and radial velocity of the cluster, we obtained its space motions and Galactic orbits in two different three component Galactic potentials.展开更多
If Michelson were to answer the question posed in the title, given the line of reasoning he used in 1881, Michelson would seat at his desktop computer to calculate the expected fringeshifts for several solar speeds ar...If Michelson were to answer the question posed in the title, given the line of reasoning he used in 1881, Michelson would seat at his desktop computer to calculate the expected fringeshifts for several solar speeds around 400 km/s and various directions of motion. Present author did exactly the same in 2001 to plan his repetition of Michelson and Morley’s (MM) 1887 experiment. The paper sketchedly summarizes the procedure to calculate expected fringeshifts in the MM interferometer for solar speeds available at Miller’s epoch. In a pre-relativistic context, amplitudes of several fringeshifts may be expected in both MM and Miller experiments. However, all interferometer experiments up to 1930 were designed under the (incorrect from a modern viewpoint) assumption that fringeshifts would be smaller than one fringe-width. The inescapable conclusion is that those experiments were not appropriate to measure the true value of solar motion, always yielding a small, but lower than expected, value for solar speed. The ensuing “negative” interpretation led to the birth of relativity theory and to a new series of experiments implicitly designed to test the relativistic hypothesis of length-contraction, while the earlier “positive” experiments were designed to test a different hypothesis: whether the motion of Earth relative to some preferred frame can be measured using an interferometer of constant dimensions. With the benefit of hindsight this writer repeated the MM experiment, correcting main weaknesses identified up to the Michelson-Morley-Miller (MMM) measurements at Mount Wilson from April 1925 to February 1926. A new possible reinterpretation of the MMM data as a sequence of stationary measurements is pointed out. Our Michelson-Morley-Miller-Munera (MMMM) experiment at Bogota (Colombia) from January 2003 to June 2005 gave values for solar absolute velocity in the same range as those obtained by astronomical means. Surprisingly, our results are compatible with modern third-party MM-type experiments designed and interpreted within relativistic contexts. Thus, a so far unexplored possibility arises: can interferometric experiments distinguish between pre-relativistic and relativistic theories? Our answer is negative.展开更多
The positions and absolute proper motions of 264 stars in the field of about 70′ x 70′ around the globular cluster NGC6205 were determined. In the astrometric reduction, three early and three late epoch plates taken...The positions and absolute proper motions of 264 stars in the field of about 70′ x 70′ around the globular cluster NGC6205 were determined. In the astrometric reduction, three early and three late epoch plates taken with the 40-cm refractor at Shensan, Shanghai, China, were used, with the epoch span of 73 a. The reduction was done using the central overlapping method, with 5 Hipparcos stars and 38 Tycho-2 stars as reference stars. Based on the reduced data of proper motion, the membership probabilities of the sample stars were determined. An absolute proper motion of the cluster of(1.49±0.36)mas a-1 in R.A. and (3.06±0.35)mas a-1 in Decl. was obtained. From this proper motion, together with distance and radial velocity data, we derived the space motion of NGC6205 and the orbit of the cluster in the Galaxy via numerical integration.展开更多
A mantle thermal plume may be tilted,deflected,or even split-up by mantle lateral flows(mantle wind)during its ascent,which in turn changes the spatial distribution of various geological-magmatic responses,such as mag...A mantle thermal plume may be tilted,deflected,or even split-up by mantle lateral flows(mantle wind)during its ascent,which in turn changes the spatial distribution of various geological-magmatic responses,such as magmatic activity in the overriding plate and hotspot tracks on the surface,affecting the reliability of the constraints on absolute plate motion history.Previous research on tilted mantle plumes has focused mainly on the lower/whole mantle regions.Whether mantle plumes formed in whole/layered mantle convection suffer lateral tilt in the upper mantle,and how this affects the magmatic activity along the surface hotspot track as well as the plume-related tectonic processes,are important scientific issues in mantle thermalplume dynamics and plate tectonics theory.This study introduces a thermal Stokes-fluid-dynamics numerical model(in ASPECT software)and pyrolite parameters constrained by mineral physics data,and quantitatively analyzes the tilted/deflected morphology of upper-mantle plumes and the concomitant surface-hotspot location-evolution characteristics under the combined effects of overriding-plate-motion driven flow(Couette)and upper mantle counter-flow(Poiseuille).We find that this composite upper-mantle wind can lead to(1)Plume head-and-upper-conduit horizontal motion in the opposite direction of the overriding plate motion and also with respect to the conduit roots,such that the magmatic spacing is increased;(2)Near-periodic split-up and ascent of a laterally-moving plume conduit,whose split-up/ascent period depends mainly on the thermo-chemical buoyancy of the plume itself;and(3)Under specific conditions of thermo-chemical buoyancy of a main“parent”plume interacting with upper mantle winds,two secondary“child”plumes hundreds of kilometers apart can sprout and ascend sequentially/subsimultaneously through the upper mantle in a very short period of time(2–4 Myr).The resulting oscillating/jumping behavior of hotspot locations along the overriding plate motion direction can be used to explain the observations on some of Earth's igneous provinces and hotspot tracks(for example,the Kerguelen hotspot)and related-tectonics,that:(i)younger hotspot-magmatictectonic regions can superimpose-to and situate-amidst older ones(surface-hotspot-motion or plume-deflection distances greater than overriding-plate-motion distances,with magmatism separated closely in space but largely in time),and(ii)plume-related magmatism can be widely separated in space but closely in time or age(near-simultaneous ascent of two distant“child”plumes from the same“parent”mantle-plume conduit).Our study suggests that the complex dynamic environment within the upper mantle should be considered when constraining absolute plate motions by the moving-hotspot-reference-frame,especially when these hotspots are located near mid-ocean ridges and/or subduction zones.展开更多
Over the past 10 years, the number of broadband seismic stations in China has increased significantly. The broadband seismic records contain information about shear-wave splitting which plays an important role in reve...Over the past 10 years, the number of broadband seismic stations in China has increased significantly. The broadband seismic records contain information about shear-wave splitting which plays an important role in revealing the upper mantle anisotropy in the Chinese mainland. Based on teleseismic SKS and SKKS phases recorded in the seismic stations, we used the analytical method of minimum transverse energy to determine the fast wave polarization direction and delay time of shear-wave splitting. We also collected results of shear-wave splitting in China and the surrounding regions from previously published papers. From the combined dataset we formed a shear-wave splitting dataset containing 1020 parameter pairs. These splitting parameters re- veal the complexity of the upper mantle anisotropy image. Our statistical analysis indicates stronger upper mantle anisotropy in the Chinese mainland, with an average shear-wave time delay of 0,95 s; the anisotropy in the western region is slightly larger (1.01 s) than in the eastern region (0.92 s). On a larger scale, the SKS splitting and surface deformation data in the Tibetan Plateau and the Tianshan region jointly support the lithospheric deformation mode, i.e. the crust-lithospheric mantle coherent deformation. In eastern China, the average fast-wave direction is approximately parallel to the direction of the absolute plate motion; thus, the upper mantle anisotropy can be attributed to the asthenospheric flow. The area from the Ordos block to the Sichuan Basin in central China is the transition zone of deformation modes between the east and the west regions, where the anisotropy images are more complicated, exhibiting "fossil" anisotropy and/or two-layer anis^3trc^py. The c^llisi(3n between the Indian Plate and the Eurasian Plate is the main factor of upper mantle anisotropy in the western region of the Chinese mainland, while the upper mantle anisotropy in the eastern region is related to the subduction of the Pacific Plate and the Philippine Sea Plate beneath the Eurasian Plate.展开更多
文摘We have obtained the absolute proper motion of globular cluster M3 from measurements of 14 plates taken with the 40cm refractor at Sheshan station of Shanghai observatory, spanning epoch is about 80 years. The positions and absolute proper motions of 24 stars in ACT catalogue are used as the reference frame. The reduction was made with the central overlapping principle. The absolute proper motions of 534 stars in the region of about 1° 5×1° 5 around the cluster M3 are determined. With the new data of proper motions, the membership probabilities of the stars are determined. The mean absolute proper motions for the cluster of -0 3±0 3 mas/yr in R.A. and -3 1±0 3 mas/yr in Dec. were obtained.Combining our results with the known distance and radial velocity of the cluster, we obtained its space motions and Galactic orbits in two different three component Galactic potentials.
文摘If Michelson were to answer the question posed in the title, given the line of reasoning he used in 1881, Michelson would seat at his desktop computer to calculate the expected fringeshifts for several solar speeds around 400 km/s and various directions of motion. Present author did exactly the same in 2001 to plan his repetition of Michelson and Morley’s (MM) 1887 experiment. The paper sketchedly summarizes the procedure to calculate expected fringeshifts in the MM interferometer for solar speeds available at Miller’s epoch. In a pre-relativistic context, amplitudes of several fringeshifts may be expected in both MM and Miller experiments. However, all interferometer experiments up to 1930 were designed under the (incorrect from a modern viewpoint) assumption that fringeshifts would be smaller than one fringe-width. The inescapable conclusion is that those experiments were not appropriate to measure the true value of solar motion, always yielding a small, but lower than expected, value for solar speed. The ensuing “negative” interpretation led to the birth of relativity theory and to a new series of experiments implicitly designed to test the relativistic hypothesis of length-contraction, while the earlier “positive” experiments were designed to test a different hypothesis: whether the motion of Earth relative to some preferred frame can be measured using an interferometer of constant dimensions. With the benefit of hindsight this writer repeated the MM experiment, correcting main weaknesses identified up to the Michelson-Morley-Miller (MMM) measurements at Mount Wilson from April 1925 to February 1926. A new possible reinterpretation of the MMM data as a sequence of stationary measurements is pointed out. Our Michelson-Morley-Miller-Munera (MMMM) experiment at Bogota (Colombia) from January 2003 to June 2005 gave values for solar absolute velocity in the same range as those obtained by astronomical means. Surprisingly, our results are compatible with modern third-party MM-type experiments designed and interpreted within relativistic contexts. Thus, a so far unexplored possibility arises: can interferometric experiments distinguish between pre-relativistic and relativistic theories? Our answer is negative.
基金The authors are indebted to the staff in PDS group of Purple Mountain Observatory, CAS, for their kindassistance in measuring the plates. This research was partially supported by NKBRSF19990754 the National Natural Scienece Foundation of China (Gran
文摘The positions and absolute proper motions of 264 stars in the field of about 70′ x 70′ around the globular cluster NGC6205 were determined. In the astrometric reduction, three early and three late epoch plates taken with the 40-cm refractor at Shensan, Shanghai, China, were used, with the epoch span of 73 a. The reduction was done using the central overlapping method, with 5 Hipparcos stars and 38 Tycho-2 stars as reference stars. Based on the reduced data of proper motion, the membership probabilities of the sample stars were determined. An absolute proper motion of the cluster of(1.49±0.36)mas a-1 in R.A. and (3.06±0.35)mas a-1 in Decl. was obtained. From this proper motion, together with distance and radial velocity data, we derived the space motion of NGC6205 and the orbit of the cluster in the Galaxy via numerical integration.
基金supported by the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)supported by the National Natural Science Foundation of China(Grant Nos.U2239205,41725017)。
文摘A mantle thermal plume may be tilted,deflected,or even split-up by mantle lateral flows(mantle wind)during its ascent,which in turn changes the spatial distribution of various geological-magmatic responses,such as magmatic activity in the overriding plate and hotspot tracks on the surface,affecting the reliability of the constraints on absolute plate motion history.Previous research on tilted mantle plumes has focused mainly on the lower/whole mantle regions.Whether mantle plumes formed in whole/layered mantle convection suffer lateral tilt in the upper mantle,and how this affects the magmatic activity along the surface hotspot track as well as the plume-related tectonic processes,are important scientific issues in mantle thermalplume dynamics and plate tectonics theory.This study introduces a thermal Stokes-fluid-dynamics numerical model(in ASPECT software)and pyrolite parameters constrained by mineral physics data,and quantitatively analyzes the tilted/deflected morphology of upper-mantle plumes and the concomitant surface-hotspot location-evolution characteristics under the combined effects of overriding-plate-motion driven flow(Couette)and upper mantle counter-flow(Poiseuille).We find that this composite upper-mantle wind can lead to(1)Plume head-and-upper-conduit horizontal motion in the opposite direction of the overriding plate motion and also with respect to the conduit roots,such that the magmatic spacing is increased;(2)Near-periodic split-up and ascent of a laterally-moving plume conduit,whose split-up/ascent period depends mainly on the thermo-chemical buoyancy of the plume itself;and(3)Under specific conditions of thermo-chemical buoyancy of a main“parent”plume interacting with upper mantle winds,two secondary“child”plumes hundreds of kilometers apart can sprout and ascend sequentially/subsimultaneously through the upper mantle in a very short period of time(2–4 Myr).The resulting oscillating/jumping behavior of hotspot locations along the overriding plate motion direction can be used to explain the observations on some of Earth's igneous provinces and hotspot tracks(for example,the Kerguelen hotspot)and related-tectonics,that:(i)younger hotspot-magmatictectonic regions can superimpose-to and situate-amidst older ones(surface-hotspot-motion or plume-deflection distances greater than overriding-plate-motion distances,with magmatism separated closely in space but largely in time),and(ii)plume-related magmatism can be widely separated in space but closely in time or age(near-simultaneous ascent of two distant“child”plumes from the same“parent”mantle-plume conduit).Our study suggests that the complex dynamic environment within the upper mantle should be considered when constraining absolute plate motions by the moving-hotspot-reference-frame,especially when these hotspots are located near mid-ocean ridges and/or subduction zones.
基金supported by the National Natural Science Foundation of China(Grants Nos.90914005,91014006,41174070)the Basic Pro-ject in the Ministry of Science and Technology(Grants No.2006FY1101100)
文摘Over the past 10 years, the number of broadband seismic stations in China has increased significantly. The broadband seismic records contain information about shear-wave splitting which plays an important role in revealing the upper mantle anisotropy in the Chinese mainland. Based on teleseismic SKS and SKKS phases recorded in the seismic stations, we used the analytical method of minimum transverse energy to determine the fast wave polarization direction and delay time of shear-wave splitting. We also collected results of shear-wave splitting in China and the surrounding regions from previously published papers. From the combined dataset we formed a shear-wave splitting dataset containing 1020 parameter pairs. These splitting parameters re- veal the complexity of the upper mantle anisotropy image. Our statistical analysis indicates stronger upper mantle anisotropy in the Chinese mainland, with an average shear-wave time delay of 0,95 s; the anisotropy in the western region is slightly larger (1.01 s) than in the eastern region (0.92 s). On a larger scale, the SKS splitting and surface deformation data in the Tibetan Plateau and the Tianshan region jointly support the lithospheric deformation mode, i.e. the crust-lithospheric mantle coherent deformation. In eastern China, the average fast-wave direction is approximately parallel to the direction of the absolute plate motion; thus, the upper mantle anisotropy can be attributed to the asthenospheric flow. The area from the Ordos block to the Sichuan Basin in central China is the transition zone of deformation modes between the east and the west regions, where the anisotropy images are more complicated, exhibiting "fossil" anisotropy and/or two-layer anis^3trc^py. The c^llisi(3n between the Indian Plate and the Eurasian Plate is the main factor of upper mantle anisotropy in the western region of the Chinese mainland, while the upper mantle anisotropy in the eastern region is related to the subduction of the Pacific Plate and the Philippine Sea Plate beneath the Eurasian Plate.