BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the rec...The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.展开更多
This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result i...This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the interconnection matrix T of the neural system satisfies that - T is an H matrix with nonnegative diagonal elements, then the neural system is absolutely exponentially stable(AEST). The Hopfield network, Cellular neural network and Bidirectional associative memory network are special cases of the network model considered in this paper. So this work gives some improvements to the previous ones.展开更多
In this paper. it is discussed that the absohue stability for zero solution of thediscrete type Lurie control systmin which the nonlinear function f(σ) satisfying conditions as followsIt gives the necessary and suffi...In this paper. it is discussed that the absohue stability for zero solution of thediscrete type Lurie control systmin which the nonlinear function f(σ) satisfying conditions as followsIt gives the necessary and sufficent conditions for the absolute stability forystem (I) under conditions (2).We also obtain the sufficient criteria for absolutesiability of the simplified system of (I) under conditions (3) .展开更多
In this paper. it is discussed that the absolute for zero solution of the discrete type Lurie control systemin which the nonlinear function f(σ)satisfying conditions followsIt gives the necessary and sufficient condi...In this paper. it is discussed that the absolute for zero solution of the discrete type Lurie control systemin which the nonlinear function f(σ)satisfying conditions followsIt gives the necessary and sufficient conditions for the absolute stability for system (1) under conditions (2).We also obtain the sufficient for absolute stability of the simplified system of (1) under conditions (3) .展开更多
This paper deals with the problem of the absolute stability for general neutral type Lurie indirect control systems by Lyapunov method and linear matrix inequality (LMI) technique. Delay-dependent sufficient conditi...This paper deals with the problem of the absolute stability for general neutral type Lurie indirect control systems by Lyapunov method and linear matrix inequality (LMI) technique. Delay-dependent sufficient conditions for the absolute stability are derived and expressed as the feasibility problem of LMI, which can be easily solved by Matlab Toolbox. Finally, some examples are provide to demonstrate the effectiveness of proposed method.展开更多
In this paper, a new bilateral control algorithm based on absolute stability theory is put forward, which aims at the time-delay teleoperation system with force feedback from the slave directly. In the new control alg...In this paper, a new bilateral control algorithm based on absolute stability theory is put forward, which aims at the time-delay teleoperation system with force feedback from the slave directly. In the new control algorithm, the delay-dependent stability, instead of delay-independent stability, is taken as the aim of control design. It improves the transparency of the system at the price of unnecessary stability. With this algorithm, the time-delay teleoperation systems have good transparency and stability. A simulation system is established to verify the effect of this algorithm.展开更多
In this paper, we present a new sufficient condition for absolute stability of Lure system with two additive time-varying delay components. This criterion is expressed as a set of linear matrix inequalities (LMIs), ...In this paper, we present a new sufficient condition for absolute stability of Lure system with two additive time-varying delay components. This criterion is expressed as a set of linear matrix inequalities (LMIs), which can be readily tested by using standard numerical software. We use this new criterion to stabilize a class of nonlinear time-delay systems. Some numerical examples are given to illustrate the applicability of the results using standard numerical software.展开更多
In this paper, the absolute stability of control systems with multi nonlinear feedback terms are studied. The sufficient and necessary conditions of absolute stability are obtained. Some applied sufficient conditions ...In this paper, the absolute stability of control systems with multi nonlinear feedback terms are studied. The sufficient and necessary conditions of absolute stability are obtained. Some applied sufficient conditions of absolute stability are given.展开更多
In this paper the authors study two classes of time-varying nonlinear control systems. A few sufficient conditions of absolute stability of these systems were obtained by means of classical analysis and the analogue o...In this paper the authors study two classes of time-varying nonlinear control systems. A few sufficient conditions of absolute stability of these systems were obtained by means of classical analysis and the analogue of the variation of constants formula of nonlinear systems. Moreover, they gave some sufficient conditions of absolute stability in Hurwitz angle for these systems.展开更多
This paper reports on laser surface remelting experiments performed on a Zn-2wt.%Cu hypoperitectic alloy by employing a 5kW CW CO2 laser at scanning velocities between 6 and 1207mm/s. The growth velocities of the mi- ...This paper reports on laser surface remelting experiments performed on a Zn-2wt.%Cu hypoperitectic alloy by employing a 5kW CW CO2 laser at scanning velocities between 6 and 1207mm/s. The growth velocities of the mi- crostructures in the laser molten pool were accurately measured. The planar interface structure caused by the high velocity absolute stability was achieved at a growth velocity of 210 mm/s. An implicit expression of the critical solidification velocity for the cellular-planar transition was carried out by nonlinear stability analyses of the planar interface. The results showed a better agreement with the measured critical velocity than that predicted by M-S theory. Cell-free structures were observed throughout the whole molten pool at a scanning velocity of 652 mm/s and the calculated minimum temperature gradient in this molten pool was very close to the critical temperature gradient for high gradient absolute stability (HGAS) of the η phase. This indicates that HGAS was successfully achieved in the present experiments.展开更多
In this paper, we investigate the absolute stability of the general Lurie control systems. The necessary and sufficient conditions for absolute stability are obtained. These conditions can be readily checked and are c...In this paper, we investigate the absolute stability of the general Lurie control systems. The necessary and sufficient conditions for absolute stability are obtained. These conditions can be readily checked and are convenient in application.展开更多
In this paper, we transform n-th order Lure direct control systems into nonlinear systems with separating variables, and induce a concept for absolute stability of part arguments. The necessary and sufficient conditio...In this paper, we transform n-th order Lure direct control systems into nonlinear systems with separating variables, and induce a concept for absolute stability of part arguments. The necessary and sufficient conditions (NASC) for the absolute stability of Lure direct control systems are given and some sufficient conditions are obtained展开更多
The absolute stability of a class of indirect control systems was studied by applying the theory of Hermitian quadratic form and Jordan normal form. The algebraic formal criteria for the absolute stability are establi...The absolute stability of a class of indirect control systems was studied by applying the theory of Hermitian quadratic form and Jordan normal form. The algebraic formal criteria for the absolute stability are established, and these results are new and useful.展开更多
Necessary and suffcient conditions for the existence of a Lyapunov function in the Lur ’ e form to guarantee the absolute stability of Lur’ e control systems with multiple non-linearities are discussed in this paper...Necessary and suffcient conditions for the existence of a Lyapunov function in the Lur ’ e form to guarantee the absolute stability of Lur’ e control systems with multiple non-linearities are discussed in this paper. It simplifies the existence problem to one of solving a set of linear matrix inequalities (LMIs). If those LMIs are feasible, free parameters in the Lyapunov function, such as the positive definite matrix and the coefficients of the integral terms, are given by the solution of the LMIs. Otherwise, this Lyapunov function does not exist. Some sufficient conditions are also obtained for the robust absolute stability of uncertain systems. A numerical example is provided to demonstrate the effectiveness of the proposed method.展开更多
In this paper, the problem of absolute stability of continuous time with parametric nonlinear system uncertainty of a linear part and sector uncertainty of its nonlinear part is considered, the and sufficient conditi...In this paper, the problem of absolute stability of continuous time with parametric nonlinear system uncertainty of a linear part and sector uncertainty of its nonlinear part is considered, the and sufficient conditions for absolute stability of direct and indirect control systems are presented. The corresponding results for robust absolute stability are improved.展开更多
Absolute stability problem has theoretical and engineering importance for control engineering and control theory. In this paper, based on the dimension reducing method, sufficient conditions for the absolute stability...Absolute stability problem has theoretical and engineering importance for control engineering and control theory. In this paper, based on the dimension reducing method, sufficient conditions for the absolute stability of several classes of Lurie control systems are given.展开更多
Time delay existes widely in various real engineering systems and can result in unsatisfactory performance or even an instability of control systems. Therefore, to investigate the stability for time delay systems is o...Time delay existes widely in various real engineering systems and can result in unsatisfactory performance or even an instability of control systems. Therefore, to investigate the stability for time delay systems is of vitul importance in control theory and its applications. Many researchers have studied the stability criteria of systems with constant delay or bound varying time delay, but few of them studied large time delay or unbound time delay. Large time delay existes commonly in various engineering applications. In this paper, the absolute stability of Lurie type direct control systems and indirect control systems with several time delays are discussed. Based on Lyapunov theory, the new delay dependent absolute stability criteria are derived. In our theorem, time delays can be unbound functions, which shows that the results are less conservative than that of existed criteria.展开更多
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
基金The National Natural Science Foundation of China(No.60835001,60875035,60905009,61004032,61004064,11071001)China Postdoctoral Science Foundation(No.201003546)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20093401110001)the Major Program of Higher Education of Anhui Province(No.KJ2010ZD02)the Natural Science Research Project of Higher Education of Anhui Province(No.KJ2011A020)
文摘The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.
文摘This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the interconnection matrix T of the neural system satisfies that - T is an H matrix with nonnegative diagonal elements, then the neural system is absolutely exponentially stable(AEST). The Hopfield network, Cellular neural network and Bidirectional associative memory network are special cases of the network model considered in this paper. So this work gives some improvements to the previous ones.
文摘In this paper. it is discussed that the absohue stability for zero solution of thediscrete type Lurie control systmin which the nonlinear function f(σ) satisfying conditions as followsIt gives the necessary and sufficent conditions for the absolute stability forystem (I) under conditions (2).We also obtain the sufficient criteria for absolutesiability of the simplified system of (I) under conditions (3) .
文摘In this paper. it is discussed that the absolute for zero solution of the discrete type Lurie control systemin which the nonlinear function f(σ)satisfying conditions followsIt gives the necessary and sufficient conditions for the absolute stability for system (1) under conditions (2).We also obtain the sufficient for absolute stability of the simplified system of (1) under conditions (3) .
文摘This paper deals with the problem of the absolute stability for general neutral type Lurie indirect control systems by Lyapunov method and linear matrix inequality (LMI) technique. Delay-dependent sufficient conditions for the absolute stability are derived and expressed as the feasibility problem of LMI, which can be easily solved by Matlab Toolbox. Finally, some examples are provide to demonstrate the effectiveness of proposed method.
基金This work was supported by 863 Program of PRC (No.2002AA742045).
文摘In this paper, a new bilateral control algorithm based on absolute stability theory is put forward, which aims at the time-delay teleoperation system with force feedback from the slave directly. In the new control algorithm, the delay-dependent stability, instead of delay-independent stability, is taken as the aim of control design. It improves the transparency of the system at the price of unnecessary stability. With this algorithm, the time-delay teleoperation systems have good transparency and stability. A simulation system is established to verify the effect of this algorithm.
文摘In this paper, we present a new sufficient condition for absolute stability of Lure system with two additive time-varying delay components. This criterion is expressed as a set of linear matrix inequalities (LMIs), which can be readily tested by using standard numerical software. We use this new criterion to stabilize a class of nonlinear time-delay systems. Some numerical examples are given to illustrate the applicability of the results using standard numerical software.
文摘In this paper, the absolute stability of control systems with multi nonlinear feedback terms are studied. The sufficient and necessary conditions of absolute stability are obtained. Some applied sufficient conditions of absolute stability are given.
文摘In this paper the authors study two classes of time-varying nonlinear control systems. A few sufficient conditions of absolute stability of these systems were obtained by means of classical analysis and the analogue of the variation of constants formula of nonlinear systems. Moreover, they gave some sufficient conditions of absolute stability in Hurwitz angle for these systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50201012 and 50471065).
文摘This paper reports on laser surface remelting experiments performed on a Zn-2wt.%Cu hypoperitectic alloy by employing a 5kW CW CO2 laser at scanning velocities between 6 and 1207mm/s. The growth velocities of the mi- crostructures in the laser molten pool were accurately measured. The planar interface structure caused by the high velocity absolute stability was achieved at a growth velocity of 210 mm/s. An implicit expression of the critical solidification velocity for the cellular-planar transition was carried out by nonlinear stability analyses of the planar interface. The results showed a better agreement with the measured critical velocity than that predicted by M-S theory. Cell-free structures were observed throughout the whole molten pool at a scanning velocity of 652 mm/s and the calculated minimum temperature gradient in this molten pool was very close to the critical temperature gradient for high gradient absolute stability (HGAS) of the η phase. This indicates that HGAS was successfully achieved in the present experiments.
基金Project supported by the National Natural Science Foundation of China.
文摘In this paper, we investigate the absolute stability of the general Lurie control systems. The necessary and sufficient conditions for absolute stability are obtained. These conditions can be readily checked and are convenient in application.
基金Project supported by the National Natural Science Foundation of China.
文摘In this paper, we transform n-th order Lure direct control systems into nonlinear systems with separating variables, and induce a concept for absolute stability of part arguments. The necessary and sufficient conditions (NASC) for the absolute stability of Lure direct control systems are given and some sufficient conditions are obtained
基金Supported by National Natural Science Foundation of China (60721062) and National High Technology Research and Development Program of China (863 Program) (2006AA04Z182)
基金Supported by National High Technology Research and Development Program of China(863 Program)(2009AA04Z139) National Natural Science Foundation of China(60904011)+1 种基金 Natural Science Foundation of Zhejiang Province(Y1090834) Science Foundation of Zhejiang Sci-Tech University(ZSTU0803817-Y)
文摘The absolute stability of a class of indirect control systems was studied by applying the theory of Hermitian quadratic form and Jordan normal form. The algebraic formal criteria for the absolute stability are established, and these results are new and useful.
基金This work was supported by the Doctor Subject Foundation of China (No. 2000053303)
文摘Necessary and suffcient conditions for the existence of a Lyapunov function in the Lur ’ e form to guarantee the absolute stability of Lur’ e control systems with multiple non-linearities are discussed in this paper. It simplifies the existence problem to one of solving a set of linear matrix inequalities (LMIs). If those LMIs are feasible, free parameters in the Lyapunov function, such as the positive definite matrix and the coefficients of the integral terms, are given by the solution of the LMIs. Otherwise, this Lyapunov function does not exist. Some sufficient conditions are also obtained for the robust absolute stability of uncertain systems. A numerical example is provided to demonstrate the effectiveness of the proposed method.
文摘In this paper, the problem of absolute stability of continuous time with parametric nonlinear system uncertainty of a linear part and sector uncertainty of its nonlinear part is considered, the and sufficient conditions for absolute stability of direct and indirect control systems are presented. The corresponding results for robust absolute stability are improved.
文摘Absolute stability problem has theoretical and engineering importance for control engineering and control theory. In this paper, based on the dimension reducing method, sufficient conditions for the absolute stability of several classes of Lurie control systems are given.
文摘Time delay existes widely in various real engineering systems and can result in unsatisfactory performance or even an instability of control systems. Therefore, to investigate the stability for time delay systems is of vitul importance in control theory and its applications. Many researchers have studied the stability criteria of systems with constant delay or bound varying time delay, but few of them studied large time delay or unbound time delay. Large time delay existes commonly in various engineering applications. In this paper, the absolute stability of Lurie type direct control systems and indirect control systems with several time delays are discussed. Based on Lyapunov theory, the new delay dependent absolute stability criteria are derived. In our theorem, time delays can be unbound functions, which shows that the results are less conservative than that of existed criteria.