A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) me...A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) method, the interaction of electromagnetic (EM) waves with the model can be studied. In this paper, three covering cases are considered: a. RAM or plasma covering the metal solely; b. RAM and plasma covering the metal, while plasma is placed outside; e. RAM and plasma covering the metal, while RAM is placed outside. The calculated results show that the covering order has a great influence on the absorption of EM waves. Compared to case a, case b has an advantage in the absorption of relatively high-frequency EM waves (HFWs), whereas case c has an advantage in the absorption of relatively low-frequency EM waves (LFWs). Through the optimization of the parameters of both plasma and RAM, it is hopeful to obtain a broad absorption band by RAM and plasma covering. Near-field attenuation rate and far-field radar cross section (RCS) are employed to compare the different cases.展开更多
Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment mon...Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment monitoring.Given the weak scattering characteristics of the ocean,the system thermal noise superimposed on SAR images has significant interference,especially in cross-polarization channels.Noise-Equivalent Sigma-Zero(NESZ)is a measure of the sensitivity of the radar to areas of low backscatter.The NESZ is defined to be the scattering cross-section coefficient of an area which contributes a mean level in the image equal to the signal-independent additive noise level.For TOPSAR,NESZ exhibits the shape of the SAR scanning gain curve in the azimuth and the shape of the antenna pattern in the range.Therefore,the accurate measurement of NESZ plays a vital role in the application of spaceborne SAR sea surface cross-polarization data.This paper proposes a theoretical calculation method for the NESZ curve in GF3-02 TOPSAR mode based on SAR noise inner calibration data and the imaging algorithm.A method for correcting the error existing in the theoretical curve of NESZ is also proposed according to the relationship between sea surface backscattering and wind speed and the same characteristics of target scattering in the overlapping area of adjacent sub-swaths.According to assessment with wide-swath TOPSAR cross-polarization data,the GF3-02 TOPSAR mode has a very low thermal noise level,which is better than−33 dB at the edge of each beam,and controlled below−38 dB at the center of the beam.The two-dimensional reference curves of the NESZ of each beam are provided to the GF3-02 TOPSAR users.After discussing the relationship between normalized radar cross section(NRCS)and wind speed,we provide a formula for NRCS related to wind speed and radar incidence angle.Compared with the NRCS derived from this formula and the NESZ-subtracted NRCS of SAR images,the bias is−0.0048 dB,the Root Mean Square Error is 1.671 dB and the correlation coefficient is 0.939.展开更多
As a lot of electromagnetic pollution and interference issues have emerged,to overcome electromagnetic interference,prevent electromagnetic hazards,and develop new high-performance electromagnetic wave(EMW)absorbers h...As a lot of electromagnetic pollution and interference issues have emerged,to overcome electromagnetic interference,prevent electromagnetic hazards,and develop new high-performance electromagnetic wave(EMW)absorbers have become a significant task in the field of materials science.In this paper,a three-dimensional(3D)carbon nanofibers network with core-shell structure,embedded with varied molar ratios of iron and cobalt(4:0,3:1,2:2,1:3,0:4),was effectively synthesized(Fe/Co@C-CNFs)via electrospinning.The phase,microstructure,magnetic and EMW absorption properties were studied.It is discovered that Fe/Co@C-CNFs doped with iron:cobalt=1:1 have excellent EMW absorption capacity.When the matching thickness is 1.08 mm,the minimum reflection loss(RL)value is-18.66 dB,while the maximum effective absorption bandwidth(EAB)reaches 4.2 GHz(13.9-18 GHz)at a thickness of 1.22 mm.This is owing to the absorbers'superior impedance matching and multiple reflections as well as the conductivity,dielectric,and magnetic losses of carbon nanofibers embedded with Fe-Co alloy particles.In addition,the radar cross section(RCS)of the absorbers has been calculated by CST Studio Suite,showing that the absorbing coating can effectively reduce the RCS at various angles,especially for Fe/Co@C-CNFs doped with iron:cobalt=1:1.These findings not only provide new insights for the preparation of light-weight and high-performance electromagnetic wave absorbers,but also contribute to energy storage and conversion.展开更多
We have designed a Metamaterial unit-cell for 9 GHz frequency. Periodic structure was used at 4.25 × 4.25 mm with a thickness of 0.35 mm and giving us the 99.99% of absorbance at 9 GHz in simulated results. We ha...We have designed a Metamaterial unit-cell for 9 GHz frequency. Periodic structure was used at 4.25 × 4.25 mm with a thickness of 0.35 mm and giving us the 99.99% of absorbance at 9 GHz in simulated results. We have implemented a rectangular microstrip antenna and loaded it with Metamaterial unit-cells which provided improved results. There were results available for reflection coefficient (s11 parameter) at 9 GHz and also helping for the reduction of the Radar Cross Section of an antenna, which reduced more than 20 dB and not affected its directivity and gain.展开更多
A model complex optical potential rewritten by the conception of bonded atom, which considers the overlapping effect of electron cloud, is employed to calculate the total (elastic + inelastic) cross sections with simp...A model complex optical potential rewritten by the conception of bonded atom, which considers the overlapping effect of electron cloud, is employed to calculate the total (elastic + inelastic) cross sections with simple molecules (N2, O2, NO2, NO, N2O) consisting of N & O atoms over an incident energy range of 100 - 1600 eV by the use of additivity rule at Roothaan-Hartree-Fock level. In the study, the complex optical potential composed of static, exchange, correlation polarization plus absorption contributions firstly uses bonded-atom conception. The qualitative results are compared with experimental data and other calculations wherever available and good agreement is obtained. The total cross sections of electron-molecule scattering above 100 eV can be successfully calculated.展开更多
The total (elastic plus inelastic) cross sections for positron scattering from N2 and CO2 over the incident energy range from 30 to 3000eV are calculated using the additivity rule model at Hartree-Fock level. A comp...The total (elastic plus inelastic) cross sections for positron scattering from N2 and CO2 over the incident energy range from 30 to 3000eV are calculated using the additivity rule model at Hartree-Fock level. A complex optical model potential modified by incorporating the concept of bonded atom, which takes into account the overlapping effect of electron clouds between two atoms in a molecule, is employed to calculate the total cross section of positron-molecule scattering. The calculated total cross sections are in good agreement with those reported by experiments and other theories over a wide energy range.展开更多
基金National Nature Science Foundation of China(No.90405004)
文摘A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) method, the interaction of electromagnetic (EM) waves with the model can be studied. In this paper, three covering cases are considered: a. RAM or plasma covering the metal solely; b. RAM and plasma covering the metal, while plasma is placed outside; e. RAM and plasma covering the metal, while RAM is placed outside. The calculated results show that the covering order has a great influence on the absorption of EM waves. Compared to case a, case b has an advantage in the absorption of relatively high-frequency EM waves (HFWs), whereas case c has an advantage in the absorption of relatively low-frequency EM waves (LFWs). Through the optimization of the parameters of both plasma and RAM, it is hopeful to obtain a broad absorption band by RAM and plasma covering. Near-field attenuation rate and far-field radar cross section (RCS) are employed to compare the different cases.
基金The National Natural Science Foundation of China under contract No.41976169.
文摘Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment monitoring.Given the weak scattering characteristics of the ocean,the system thermal noise superimposed on SAR images has significant interference,especially in cross-polarization channels.Noise-Equivalent Sigma-Zero(NESZ)is a measure of the sensitivity of the radar to areas of low backscatter.The NESZ is defined to be the scattering cross-section coefficient of an area which contributes a mean level in the image equal to the signal-independent additive noise level.For TOPSAR,NESZ exhibits the shape of the SAR scanning gain curve in the azimuth and the shape of the antenna pattern in the range.Therefore,the accurate measurement of NESZ plays a vital role in the application of spaceborne SAR sea surface cross-polarization data.This paper proposes a theoretical calculation method for the NESZ curve in GF3-02 TOPSAR mode based on SAR noise inner calibration data and the imaging algorithm.A method for correcting the error existing in the theoretical curve of NESZ is also proposed according to the relationship between sea surface backscattering and wind speed and the same characteristics of target scattering in the overlapping area of adjacent sub-swaths.According to assessment with wide-swath TOPSAR cross-polarization data,the GF3-02 TOPSAR mode has a very low thermal noise level,which is better than−33 dB at the edge of each beam,and controlled below−38 dB at the center of the beam.The two-dimensional reference curves of the NESZ of each beam are provided to the GF3-02 TOPSAR users.After discussing the relationship between normalized radar cross section(NRCS)and wind speed,we provide a formula for NRCS related to wind speed and radar incidence angle.Compared with the NRCS derived from this formula and the NESZ-subtracted NRCS of SAR images,the bias is−0.0048 dB,the Root Mean Square Error is 1.671 dB and the correlation coefficient is 0.939.
基金financially supported by the National Natural Science Foundation of China(No.52272117)the National Key Research and Development Program of China(Nos.2022YFB3505104 and 2022YFB3706604)the Key Research and Development Program of Shandong Province(No.2022TSGC2322)。
文摘As a lot of electromagnetic pollution and interference issues have emerged,to overcome electromagnetic interference,prevent electromagnetic hazards,and develop new high-performance electromagnetic wave(EMW)absorbers have become a significant task in the field of materials science.In this paper,a three-dimensional(3D)carbon nanofibers network with core-shell structure,embedded with varied molar ratios of iron and cobalt(4:0,3:1,2:2,1:3,0:4),was effectively synthesized(Fe/Co@C-CNFs)via electrospinning.The phase,microstructure,magnetic and EMW absorption properties were studied.It is discovered that Fe/Co@C-CNFs doped with iron:cobalt=1:1 have excellent EMW absorption capacity.When the matching thickness is 1.08 mm,the minimum reflection loss(RL)value is-18.66 dB,while the maximum effective absorption bandwidth(EAB)reaches 4.2 GHz(13.9-18 GHz)at a thickness of 1.22 mm.This is owing to the absorbers'superior impedance matching and multiple reflections as well as the conductivity,dielectric,and magnetic losses of carbon nanofibers embedded with Fe-Co alloy particles.In addition,the radar cross section(RCS)of the absorbers has been calculated by CST Studio Suite,showing that the absorbing coating can effectively reduce the RCS at various angles,especially for Fe/Co@C-CNFs doped with iron:cobalt=1:1.These findings not only provide new insights for the preparation of light-weight and high-performance electromagnetic wave absorbers,but also contribute to energy storage and conversion.
文摘We have designed a Metamaterial unit-cell for 9 GHz frequency. Periodic structure was used at 4.25 × 4.25 mm with a thickness of 0.35 mm and giving us the 99.99% of absorbance at 9 GHz in simulated results. We have implemented a rectangular microstrip antenna and loaded it with Metamaterial unit-cells which provided improved results. There were results available for reflection coefficient (s11 parameter) at 9 GHz and also helping for the reduction of the Radar Cross Section of an antenna, which reduced more than 20 dB and not affected its directivity and gain.
基金This work was supported by the National Natural Science Foundation of China under Grant No.10174019.
文摘A model complex optical potential rewritten by the conception of bonded atom, which considers the overlapping effect of electron cloud, is employed to calculate the total (elastic + inelastic) cross sections with simple molecules (N2, O2, NO2, NO, N2O) consisting of N & O atoms over an incident energy range of 100 - 1600 eV by the use of additivity rule at Roothaan-Hartree-Fock level. In the study, the complex optical potential composed of static, exchange, correlation polarization plus absorption contributions firstly uses bonded-atom conception. The qualitative results are compared with experimental data and other calculations wherever available and good agreement is obtained. The total cross sections of electron-molecule scattering above 100 eV can be successfully calculated.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 10574039.
文摘The total (elastic plus inelastic) cross sections for positron scattering from N2 and CO2 over the incident energy range from 30 to 3000eV are calculated using the additivity rule model at Hartree-Fock level. A complex optical model potential modified by incorporating the concept of bonded atom, which takes into account the overlapping effect of electron clouds between two atoms in a molecule, is employed to calculate the total cross section of positron-molecule scattering. The calculated total cross sections are in good agreement with those reported by experiments and other theories over a wide energy range.