Five phospholipids in human placenta were determined by phosphorus 31 nuclear magnetic resonance(^(31)P NMR)spectroscopy and thin-layer chromatography(TLC) scanning combined with the corrective method of absorbance pr...Five phospholipids in human placenta were determined by phosphorus 31 nuclear magnetic resonance(^(31)P NMR)spectroscopy and thin-layer chromatography(TLC) scanning combined with the corrective method of absorbance proportional coefficient. The NMR spectrometer used this investigation was a Bruker AM-500 spectrometer operating at 202.4 MHz for ^(31)P chemical shifts are relative to 85% phosphoric acid. TIC was carried out by silica gel H plate developed in chloroform-methanol-glacial acetic acid-ethanol-water(25:4:6:2:0.5),with Vaskovsky reagent as colour -developing agent of phospholipids.展开更多
The deformation of reeds in automotive hydraulic shock absorbers is analyzed with the finite element method. Combination of different thick reeds mounted on different supports is studied. The computational results sho...The deformation of reeds in automotive hydraulic shock absorbers is analyzed with the finite element method. Combination of different thick reeds mounted on different supports is studied. The computational results show that deformation of the overlapped reeds is not always equal to the sum of deflection of single reed under any conditions. Experimental results prove computational results to be correct and computational method effective. The method of analysis and view of point can provide reference to the design and manufacture of hydraulic shock absorbers using reeds.展开更多
The efficient dynamic modeling and vibration transfer analysis of a fluid-delivering branch pipeline(FDBP)are essential for analyzing vibration coupling effects and implementing vibration reduction optimization.Theref...The efficient dynamic modeling and vibration transfer analysis of a fluid-delivering branch pipeline(FDBP)are essential for analyzing vibration coupling effects and implementing vibration reduction optimization.Therefore,this study proposes a reduced-order dynamic modeling method suitable for FDBPs and then analyzes the vibration transfer characteristics.For the modeling method,the finite element method and absorbing transfer matrix method(ATMM)are integrated,considering the fluid–structure coupling effect and fluid disturbances.The dual-domain dynamic substructure method is developed to perform the reduced-order modeling of FDBP,and ATMM is adopted to reduce the matrix order when solving fluid disturbances.Furthermore,the modeling method is validated by experiments on an H-shaped branch pipeline.Finally,transient and steady-state vibration transfer analyses of FDBP are performed,and the effects of branch locations on natural characteristics and vibration transfer behavior are analyzed.Results show that transient vibration transfer represents the transfer and conversion of the kinematic,strain,and damping energies,while steady-state vibration transfer characteristics are related to the vibration mode.In addition,multiple-order mode exchanges are triggered when branch locations vary in frequency-shift regions,and the mode-exchange regions are also the transformation ones for vibration transfer patterns.展开更多
With the techniques provided by the complex my method,like co,nplex ray expansion, complex mytracing,complex my paraxial approximation, etc.,the back scatter of dihedral corner reflectors is evaluated.Numerical result...With the techniques provided by the complex my method,like co,nplex ray expansion, complex mytracing,complex my paraxial approximation, etc.,the back scatter of dihedral corner reflectors is evaluated.Numerical results show that this method gives good and useful RCS prediction of the targets.展开更多
文摘Five phospholipids in human placenta were determined by phosphorus 31 nuclear magnetic resonance(^(31)P NMR)spectroscopy and thin-layer chromatography(TLC) scanning combined with the corrective method of absorbance proportional coefficient. The NMR spectrometer used this investigation was a Bruker AM-500 spectrometer operating at 202.4 MHz for ^(31)P chemical shifts are relative to 85% phosphoric acid. TIC was carried out by silica gel H plate developed in chloroform-methanol-glacial acetic acid-ethanol-water(25:4:6:2:0.5),with Vaskovsky reagent as colour -developing agent of phospholipids.
基金This project is supported by Provincial Natural Science Foundation of Liaoning (972028) .Manuscript received on September 16, 19
文摘The deformation of reeds in automotive hydraulic shock absorbers is analyzed with the finite element method. Combination of different thick reeds mounted on different supports is studied. The computational results show that deformation of the overlapped reeds is not always equal to the sum of deflection of single reed under any conditions. Experimental results prove computational results to be correct and computational method effective. The method of analysis and view of point can provide reference to the design and manufacture of hydraulic shock absorbers using reeds.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.N2403006)the National Science and Technology Major Project,China(Grant No.J2019-I-0008-0008).
文摘The efficient dynamic modeling and vibration transfer analysis of a fluid-delivering branch pipeline(FDBP)are essential for analyzing vibration coupling effects and implementing vibration reduction optimization.Therefore,this study proposes a reduced-order dynamic modeling method suitable for FDBPs and then analyzes the vibration transfer characteristics.For the modeling method,the finite element method and absorbing transfer matrix method(ATMM)are integrated,considering the fluid–structure coupling effect and fluid disturbances.The dual-domain dynamic substructure method is developed to perform the reduced-order modeling of FDBP,and ATMM is adopted to reduce the matrix order when solving fluid disturbances.Furthermore,the modeling method is validated by experiments on an H-shaped branch pipeline.Finally,transient and steady-state vibration transfer analyses of FDBP are performed,and the effects of branch locations on natural characteristics and vibration transfer behavior are analyzed.Results show that transient vibration transfer represents the transfer and conversion of the kinematic,strain,and damping energies,while steady-state vibration transfer characteristics are related to the vibration mode.In addition,multiple-order mode exchanges are triggered when branch locations vary in frequency-shift regions,and the mode-exchange regions are also the transformation ones for vibration transfer patterns.
文摘With the techniques provided by the complex my method,like co,nplex ray expansion, complex mytracing,complex my paraxial approximation, etc.,the back scatter of dihedral corner reflectors is evaluated.Numerical results show that this method gives good and useful RCS prediction of the targets.