期刊文献+
共找到1,222篇文章
< 1 2 62 >
每页显示 20 50 100
A joint absorbing boundary for the multiple-relaxation-time lattice Boltzmann method in seismic acoustic wavefield modeling 被引量:1
1
作者 Chun-Tao Jiang Hui Zhou +2 位作者 Mu-Ming Xia Han-Ming Chen Jin-Xuan Tang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2113-2126,共14页
Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finel... Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology. 展开更多
关键词 Multiple-relaxation-time Lattice Boltzmann method Seismic acoustic wavefield simulation Truncated Boundary reflection Joint absorbing boundary
下载PDF
Editorial for special issue on electromagnetic wave absorbing materials 被引量:1
2
作者 Guanglei Wu Hongjing Wu Zirui Jia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期401-404,共4页
With the rapid development of information technology and electronics industry,stealth warplanes,radar stealth,electronic countermeasures,microwave communications,and other equipment have played an increasingly importa... With the rapid development of information technology and electronics industry,stealth warplanes,radar stealth,electronic countermeasures,microwave communications,and other equipment have played an increasingly important role in military defense.Therefore,the design and development of new electromagnetic wave(EMW)absorbing materials with high performance and environmental applicability that can be widely used in the microwave field has become a key issue and a major strategic challenge that needs to be urgently addressed in the modernization and upgrading of major advanced military equipment.However,how to effectively address the growing electromagnetic pollution has been an important issue that has plagued researchers in the field of EMW absorption for many years. 展开更多
关键词 absorbing MICROWAVE WAVE
下载PDF
Lightweight broadband microwave absorbing metamaterial with CB-ABS composites fabricated by 3D printing 被引量:1
3
作者 陈孟州 汪刘应 +3 位作者 刘顾 葛超群 李涤尘 梁庆宣 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期691-695,共5页
The self-similarity,high geometric symmetry and spatial utilization properties of fractal structures provide new methods for the development of absorbing metamaterials.In this paper,the microwave absorption properties... The self-similarity,high geometric symmetry and spatial utilization properties of fractal structures provide new methods for the development of absorbing metamaterials.In this paper,the microwave absorption properties of the gradient dendritic fractal metamaterial structure(GDFMs)based on carbon black and acrylonitrile-butadiene-styrene composites were investigated.The optimal metamaterial structure has an effective absorption in the frequency range of 4.5-40 GHz.The rotational-symmetry GDFMs leads to the polarization independence,and the GDFMs exhibits a wide-angle absorption performance for both TE and TM waves.It is expected that the proposed GDFMs has good application prospects in electromagnetic wave absorption. 展开更多
关键词 additive manufacturing broadband absorbing polarization and angle independence gradient dendritic fractal structure
下载PDF
Preparation and Microwave Absorbing Properties of Double-layer Fine Iron Tailings Cementitious Materials
4
作者 LI Huawei WANG Rong +3 位作者 WANG Yulin LIU Feiyu WANG Qian WEI Muwang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1126-1135,共10页
To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into diffe... To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into different particle sizes by planetary ball mill,and the physicochemical properties of iron tailings were tested by laser particle size analyzer and scanning electron microscope(SEM).The electromagnetic parameters of iron tailings cementitious materials were characterized by a vector network analyzer and simulated MA properties,and the MA properties of iron tailings-cement composite system with steel fiber as absorber was studied.Based on the design of the single-layer structure,optimum mix ratio and thickness configuration method of double-layer structure were further studied,meanwhile,the mechanical properties and engineering application were analyzed and discussed.The results show that the particle size of iron tailings can afiect its electromagnetic behavior in cementitious materials,and the smaller particles lead the increase of demagnetisation efiect induced by domain wall motion and achieve better microwave absorbing properties in cementitious materials.When the thickness of matching layer and absorbing layer is 5 mm,the optimized microwave absorbing properties of C1/C3 double-layer cementitious material can obtain optimal RL value of-27.61 dB and efiective absorbing bandwidth of 0.97 GHz,which attributes to the synergistic efiect of impedance matching and attenuation characteristics.The double-layer microwave absorbing materials obtain excellent absorbing properties and show great design flexibility and diversity,which can be used as a suitable candidate for the preparation of favorable microwave absorbing cementitious materials. 展开更多
关键词 microwave absorbing properties iron tailings electromagnetic parameters single-layer structure double-layer structure impedance matching
下载PDF
Hybrid absorbing boundary condition based on transmitting boundary and its application in 3D fractional viscoacoustic modeling
5
作者 Song-Ling Li Ying Shi +2 位作者 Ning Wang Wei-Hong Wang Xuan Ke 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期840-856,共17页
An accurate numerical simulation for wave equations is essential for understanding of wave propagation in the earth's interior as well as full waveform inversion and reverse time migration. However, due to computa... An accurate numerical simulation for wave equations is essential for understanding of wave propagation in the earth's interior as well as full waveform inversion and reverse time migration. However, due to computational cost and hardware capability limitations, numerical simulations are often performed within a finite domain. Thus, an adequate absorbing boundary condition (ABC) is indispensable for obtaining accurate numerical simulation results. In this study, we develop a hybrid ABC based on a transmitting boundary, which is referred to as THABC, to eliminate artificial boundary reflections in 3D second-order fractional viscoacoustic numerical simulations. Furthermore, we propose an adaptive weighted coefficient to reconcile the transmitting and viscoacoustic wavefields in THABC. Through several numerical examples, we determine that the proposed THABC approach is characterized by the following benefits. First, with the same number of absorbing layers, THABC exhibits a better ability in eliminating boundary reflection than traditional ABC schemes. Second, THABC is more effective in computation, since it only requires the wavefields at the current and last time steps to solve the transmitting formula within the absorbing layers. Benefiting from a simple but effective combination between the transmitting equation and the second-order wave equation, our scheme performs well in the 3D fractional Laplacian viscoacoustic numerical simulation. 展开更多
关键词 Hybrid absorbing boundary Numerical simulation Transmitting boundary Fractional viscoacoustic wave equation
下载PDF
Constructing BaTiO_(3)/TiO_(2)@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties
6
作者 Dan Mao Zhen Zhang +3 位作者 Mei Yang Zumin Wang Ranbo Yu Dan Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期581-590,共10页
BaTiO_(3)/TiO_(2)@polypyrrole(PPy)composites with hollow multishelled structure(HoMS)were constructed to enhance the electromagnetic wave absorbing properties of BaTiO_(3)-based absorbing material.BaTiO_(3)/TiO_(2)HoM... BaTiO_(3)/TiO_(2)@polypyrrole(PPy)composites with hollow multishelled structure(HoMS)were constructed to enhance the electromagnetic wave absorbing properties of BaTiO_(3)-based absorbing material.BaTiO_(3)/TiO_(2)HoMSs were prepared by hydrothermal crystallization using TiO_(2)Ho MSs as template.Then,FeCl3 was introduced to initiate the oxidative polymerization of pyrrole monomer,forming BaTiO_(3)/TiO_(2)@PPy HoMSs successfully.The electromagnetic wave absorbing properties of BaTiO_(3)/TiO_(2)HoMSs and BaTiO_(3)/TiO_(2)@PPy Ho MSs with different shell number were investigated using a vector network analyzer.The results indicate that BaTiO_(3)/TiO_(2)@PPy HoMSs exhibit improved microwave absorption compared with BaTiO_(3)/TiO_(2)HoMSs.In particular,tripled-shelled BaTiO_(3)/TiO_(2)@PPy HoMS has the most excellent absorbing performance.The best reflection loss can reach up to-21.80 dB at 13.34 GHz with a corresponding absorber thickness of only 1.3 mm,and the qualified absorption bandwidth of tripled-shelled BaTiO_(3)/TiO_(2)@PPy HoMS is up to 4.2 GHz.This work paves a new way for the development of high-performance composite microwave absorbing materials. 展开更多
关键词 BaTiO_(3)/TiO_(2)@polypyrrole composites hollow multishelled structure electromagnetic wave absorbing
下载PDF
Calculation and Analysis of Acoustic Characteristics of Straight-Through Perforated Pipe Muffler Based on Multilayer Sound Absorbing Material
7
作者 刘镕基 朱从云 +1 位作者 丁国芳 院蕾 《Journal of Donghua University(English Edition)》 CAS 2023年第5期506-514,共9页
Using the multi-physical field simulation software COMSOL,the acoustic characteristics of the multilayer sound absorbing material straight-through perforated pipe muffler are studied by the finite element method.The r... Using the multi-physical field simulation software COMSOL,the acoustic characteristics of the multilayer sound absorbing material straight-through perforated pipe muffler are studied by the finite element method.The results show that the finite element calculation of the multilayer sound absorbing material straight-through the perforated pipe muffler agrees well with the experimental measurement results.The reliability of the finite element method for studying the acoustic performance of the straight-through perforated pipe muffler with multilayer sound absorbing materials is shown.Furthermore,the influence of some structural parameters of porous sound absorbing material and micro-perforated plate on the acoustic performance of the multilayer sound absorbing material straight-through perforated pipe muffler is analyzed.The muffler based on multilayer sound absorbing material is different from the traditional muffler.After applying the multilayer sound absorbing material to the straight-through perforated pipe muffler,the transmission loss value greatly increases,which provides new ideas and directions for future research on the muffler. 展开更多
关键词 porous sound absorbing material perforated tube finite element method MUFFLER acoustic characteristics
下载PDF
Multiphase Interfacial Regulation Based on Hierarchical Porous Molybdenum Selenide to Build Anticorrosive and Multiband Tailorable Absorbers 被引量:4
8
作者 Tianbao Zhao Zirui Jia +3 位作者 Jinkun Liu Yan Zhang Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期85-105,共21页
Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electroma... Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electromagnetic environment,the design of multifunctional and multiband high efficiency EMW absorbers remains a tremendous challenge.In this work,we designed a three-dimensional porous structure via the salt melt synthesis strategy to optimize the impedance matching of the absorber.Also,through interfacial engineering,a molybdenum carbide transition layer was introduced between the molybdenum selenide nanoparticles and the three-dimensional porous carbon matrix to improve the absorption behavior of the absorber.The analysis indicates that the number and components of the heterogeneous interfaces have a significant impact on the EMW absorption performance of the absorber due to mechanisms such as interfacial polarization and conduction loss introduced by interfacial engineering.Wherein,the prepared MoSe_(2)/MoC/PNC composites showed excellent EMW absorption performance in C,X,and Ku bands,especially exhibiting a reflection loss of−59.09 dB and an effective absorption bandwidth of 6.96 GHz at 1.9 mm.The coordination between structure and components endows the absorber with strong absorption,broad bandwidth,thin thickness,and multi-frequency absorption characteristics.Remarkably,it can effectively reinforce the marine anticorrosion property of the epoxy resin coating on Q235 steel substrate.This study contributes to a deeper understanding of the relationship between interfacial engineering and the performance of EMW absorbers,and provides a reference for the design of multifunctional,multiband EMW absorption materials. 展开更多
关键词 Interfacial engineering ANTICORROSION MULTIBAND Electromagnetic wave absorber
下载PDF
Effects of thermal oxidation on microwave-absorbing and mechanical properties of SiC_f/SiC composites with PyC interphase 被引量:2
9
作者 史毅敏 罗发 +3 位作者 丁冬海 穆阳 周万城 朱冬梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1484-1489,共6页
The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C... The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior. 展开更多
关键词 SiCf/SiC composites thermal oxidation dielectric properties microwave absorbing mechanical properties
下载PDF
Effects of Different Absorbing Medium on Microwave Remediation of Chlordane Contaminated Soil 被引量:2
10
作者 赵浩 周荣 +3 位作者 赵敏燕 王世强 任朋 徐炎华 《Agricultural Science & Technology》 CAS 2015年第4期750-754,共5页
Objective] This study almed to compare the effects of three absorbing medium on microwave degradation of chIordane in contaminated soiI under alkaline condition. [Method] SoiI sampIes were coI ected from the original ... Objective] This study almed to compare the effects of three absorbing medium on microwave degradation of chIordane in contaminated soiI under alkaline condition. [Method] SoiI sampIes were coI ected from the original site of a reIocated pesticide production enterprise as experimental materials, to investigate the effects of Cu2O, MnO2 and activated carbon powder as absorbing medium on soiI warming and removal rate of chIordane under alkaline condition with 20% moisture content. In addition, the effects of activated carbon as the optimal absorbing media on the removal rate of chIordane in contaminated soiI were analyzed, and the effects on the removal rate of chIordane in different weights of soiI sampIes were investigated. [Result] The effects of three different absorbing medium on the removal rates of chIordane demonstrated a descending order of activated carbon &gt; MnO2 &gt; CuO2. Under the same microwave condition, the removal rate of chIordane decreased with the increase of soiI weights, but the utiIization efficiency of microwave was improved continuousIy and tended to be stabiIized with the increase of soiI weights. [Conclu-sion] This study provided a theoretical basis for further Iarge-scale appIication in soiI remediation. 展开更多
关键词 CHLORDANE absorbing medium MICROWAVE Remedlatlon SOLI
下载PDF
Vibration Reduction by a Partitioned Dynamic Vibration Absorber with Acoustic Black Hole Features 被引量:1
11
作者 Xiaoning Zhao Chaoyan Wang +2 位作者 Hongli Ji Jinhao Qiu Li Cheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期120-134,共15页
Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates wa... Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering. 展开更多
关键词 Acoustic black hole Vibration control Dynamic vibration absorber Coupling analysis
下载PDF
Magnetic and microwave absorbing properties of M-type barium ferrite/graphene oxide composite microwave absorber 被引量:1
12
作者 荆洪阳 唐梦茹 +2 位作者 韩永典 徐连勇 李敏 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期511-515,共5页
In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autoco... In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite. 展开更多
关键词 M-type barium ferrite graphene oxide composite microwave absorber magnetic property microwave absorbing property
下载PDF
Application of the double absorbing boundary condition in seismic modeling 被引量:1
13
作者 刘洋 李向阳 陈双全 《Applied Geophysics》 SCIE CSCD 2015年第1期111-119,123,共10页
We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high... We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML. 展开更多
关键词 Double absorbing boundary condition numerical modeling finite-difference method artificial boundary condition
下载PDF
Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations 被引量:3
14
作者 赵建国 史瑞其 《Applied Geophysics》 SCIE CSCD 2013年第3期323-336,359,共15页
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme... The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media. 展开更多
关键词 absorbing boundary condition elastic wave equation perfectly matched layer finite-element modeling
下载PDF
Improved absorbing boundary condition based on linear interpolation for ADI-FDTD method 被引量:1
15
作者 赵嘉宁 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期289-293,共5页
With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) meth... With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) method. The reflection of the ABC caused by both the truncated error and the phase velocity error is analyzed. Based on the phase velocity estimation and the nonuniform cell, two methods are studied and then adopted to improve the performance of the ABC. A calculation case of a rectangular waveguide which is a typical dispersive transmission line is carried out using the ADI-FDTD method with the improved ABC for evaluation. According to the calculated case, the comparison is given between the reflection coefficients of the ABC with and without the velocity estimation and also the comparison between the reflection coefficients of the ABC with and without the nonuniform processing. The reflection variation of the ABC under different time steps is also analyzed and the acceptable worsening will not obscure the improvement on the absorption. Numerical results obviously show that efficient improvement on the absorbing performance of the ABC is achieved based on these methods for the ADI-FDTD. 展开更多
关键词 alternating-direction-implicit finite-difference time- domain ADI-FDTD method absorbing boundary condition (ABC) linear interpolation phase velocity nonuniform cell
下载PDF
Optical Nonlinearity of Violet Phosphorus and Applications in Fiber Lasers
16
作者 杨慧苒 齐梦婷 +5 位作者 李旭鹏 薛泽 鲁晨浩 成嘉伟 韩冬冬 李璐 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第1期16-20,共5页
A D-shaped fiber is coated with a new two-dimensional nanomaterial,violet phosphorus(VP),to create a saturable absorber(SA)with a modulation depth of 3.68%.Subsequently,the SA is inserted into a fiber laser,enabling s... A D-shaped fiber is coated with a new two-dimensional nanomaterial,violet phosphorus(VP),to create a saturable absorber(SA)with a modulation depth of 3.68%.Subsequently,the SA is inserted into a fiber laser,enabling successful generation of dark solitons and bright–dark soliton pairs through adjustment of the polarization state within the cavity.Through further study,mode-locked pulses are achieved,proving the existence of polarization-locked vector solitons.The results indicate that VP can be used as a polarization-independent SA. 展开更多
关键词 POLARIZATION FIBER ABSORBER
下载PDF
Study on vibration reduction of two-scale system coupled with dynamic vibration absorber
17
作者 Honglin WAN Xianghong LI Yongjun SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1335-1352,共18页
The dynamic vibration absorber with inerter and grounded stiffness(IGDVA)is used to control a two-scale system subject to a weak periodic perturbation.The vibration suppression effect is remarkable.The amplitude of th... The dynamic vibration absorber with inerter and grounded stiffness(IGDVA)is used to control a two-scale system subject to a weak periodic perturbation.The vibration suppression effect is remarkable.The amplitude of the main system coupled with absorber is significantly reduced,and the high frequency vibration completely disappears.First,through the slow-fast analysis and stability theory,it is found that the stability of the autonomous system exerts a notable regulating effect on the vibration response of the non-autonomous system.After adding the dynamic vibrator absorber,the center in the autonomous system changes to an asymptotically stable focus,consequently suppressing the vibration in the non-autonomous system.Further research reveals that the parameters of the absorber affect the real parts of the eigenvalues of the autonomous system,thereby regulating the stability of the system.Transitioning from a qualitative standpoint to a quantitative approach,a comparison of the solutions before and after the introduction of the dynamic absorber reveals that,when the grounded stiffness ratio and the mass ratio of the dynamic absorber are not equal,the high-frequency part in the analytical solution disappears.As a result,this leads to a reduction in the amplitude of the trajectory,achieving a vibration reduction effect. 展开更多
关键词 two-scale system dynamic vibration absorber vibration control inerter
下载PDF
Ultra-broadband microwave absorber and high-performance pressure sensor based on aramid nanofiber,polypyrrole and nickel porous aerogel
18
作者 Leyi Zhang Hongyu Jin +7 位作者 Hanxin Liao Rao Zhang Bochong Wang Jianyong Xiang Congpu Mu Kun Zhai Tianyu Xue Fusheng Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1912-1921,共10页
Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibe... Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibers/polypyrrole/nickel(APN)aerogels,which serve dual roles as both microwave absorbers and pressure sensors.In this work,we focused on the preparation of aramid nanofibers/polypyrrole(AP15)aerogels,where the mass ratio of aramid nanofibers to pyrrole was 1:5.We employed the oxidative polymerization method for the preparation process.Following this,nickel was thermally evaporated onto the surface of the AP15 aerogels,resulting in the creation of an ultralight(9.35 mg·cm^(-3)).This aerogel exhibited a porous structure.The introduction of nickel into the aerogel aimed to enhance magnetic loss and adjust impedance matching,thereby improving electromagnetic wave absorption performance.The minimum reflection loss value achieved was-48.7 dB,and the maximum effective absorption bandwidth spanned 8.42 GHz with a thickness of 2.9 mm.These impressive metrics can be attributed to the three-dimensional network porous structure of the aerogel and perfect impedance matching.Moreover,the use of aramid nanofibers and a three-dimensional hole structure endowed the APN aerogels with good insulation,flame-retardant properties,and compression resilience.Even under a compression strain of 50%,the aerogel maintained its resilience over 500 cycles.The incorporation of polypyrrole and nickel particles further enhanced the conductivity of the aerogel.Consequently,the final APN aerogel sensor demonstrated high sensitivity(10.78 kPa-1)and thermal stability.In conclusion,the APN aerogels hold significant promise as ultra-broadband microwave absorbers and pressure sensors. 展开更多
关键词 porous aerogel aramid nanofibers microwave absorbers pressure sensor porous structure
下载PDF
Solitons and Their Biperiodic Pulsation in Ultrafast Fiber Lasers Based on CB/GO
19
作者 Zhen-Tao Ju Zhi-Zeng Si +1 位作者 Xin Yan Chao-Qing Dai 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第8期28-32,共5页
The carbon black(CB)is introduced to manufacture CB/graphene oxide(GO)composite material to mitigate limitations of GO as a saturable absorber with the excellent performance in ultrafast fiber lasers.At a central wave... The carbon black(CB)is introduced to manufacture CB/graphene oxide(GO)composite material to mitigate limitations of GO as a saturable absorber with the excellent performance in ultrafast fiber lasers.At a central wavelength of 1555.5 nm,the stable mode-locked pulse with width of 656 fs,repetition rate of 20.16 MHz,and high signal-to-noise ratio of 82.07 dB is experimentally obtained.Additionally,experimental observations for pulsation phenomena of vector biperiodic solitons combining period-1 and period-17,period-2 and period-32,period-3 and period-36 are verified via simulations. 展开更多
关键词 fiber periodic ABSORBER
下载PDF
A flexible ultra-broadband multi-layered absorber working at 2 GHz-40 GHz printed by resistive ink
20
作者 汪涛 闫玉伦 +3 位作者 陈巩华 李迎 胡俊 毛剑波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期329-333,共5页
A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(... A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz. 展开更多
关键词 extra broadband physical model flexible metamaterial absorber MULTI-LAYER frequency selective surface
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部