The objective of this paper is to present a new method for designing absorbing or non-reflective boundary conditions (ABC) or (NRBC), illustrated by the case study of the modelling of a solid body in water, specifical...The objective of this paper is to present a new method for designing absorbing or non-reflective boundary conditions (ABC) or (NRBC), illustrated by the case study of the modelling of a solid body in water, specifically the capillary gravity waves generated by its motion at the surface. The study analyses the flow of an inviscid, barotropic, and compressible fluid around the stationary solid body. The dynamic behaviour of the fluid is analysed using a two-dimensional coupled Neumann-Kelvin model extended with capillarity and inertia terms. For computational purposes, it is necessary to truncate the unbounded spatial domain with artificial boundaries and then introduce appropriate absorbing boundary conditions. The propagation of short wavelength waves in a convective fluid medium with significant differences in properties between the interior and the surface of the fluid presents a number of difficulties in the design of these conditions. The results are illustrated numerically and commented upon.展开更多
We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high...We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) meth...With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) method. The reflection of the ABC caused by both the truncated error and the phase velocity error is analyzed. Based on the phase velocity estimation and the nonuniform cell, two methods are studied and then adopted to improve the performance of the ABC. A calculation case of a rectangular waveguide which is a typical dispersive transmission line is carried out using the ADI-FDTD method with the improved ABC for evaluation. According to the calculated case, the comparison is given between the reflection coefficients of the ABC with and without the velocity estimation and also the comparison between the reflection coefficients of the ABC with and without the nonuniform processing. The reflection variation of the ABC under different time steps is also analyzed and the acceptable worsening will not obscure the improvement on the absorption. Numerical results obviously show that efficient improvement on the absorbing performance of the ABC is achieved based on these methods for the ADI-FDTD.展开更多
In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best av...In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best available ABC. However, the traditional splitting PML (SPML) ABC has some serious disadvantages: for example, global SPML ABCs require much more computing memory, although the implementation is easy. The implementation of local SPML ABCs also has some difficulties, since edges and corners must be considered. The traditional non-splitting perfectly matched layer (NPML) ABC has complex computation because of the convolution. In this paper, based on non-splitting perfectly matched layer (NPML) ABCs combined with the complex frequency-shifted stretching function (CFS), we introduce a novel numerical implementation method for PML absorbing boundary conditions with simple calculation equations, small memory requirement, and easy programming.展开更多
When modeling wave propagation in infinite space, it is necessary to have stable absorbing boundaries to effectively eliminate spurious reflections from the truncation boundaries. The SH wave equations for Perfectly M...When modeling wave propagation in infinite space, it is necessary to have stable absorbing boundaries to effectively eliminate spurious reflections from the truncation boundaries. The SH wave equations for Perfectly Matched Layers (PML) are deduced and their Crank-Nicolson scheme are presented in this paper. We use the second-, sixth-, and tenth-order finite difference and pseudo-spectral algorithms to compute the spatial derivatives. Two numerical models, a homogeneous isotropic medium and a multi-layer model with a cave, are designed to investigate how the absorbing boundary width and the algorithms determine PML effects. Numerical results show that, for PML, the low-order finite difference algorithms have fairly good absorbing effects when the absorbing boundary is thin, whereas, high-order algorithms always have good absorption when the boundary is thick. Finally, we discuss the reflection coefficient and point out its shortcomings, which is why we use the SNR to quantitatively scale the PML effects,展开更多
Edge reflections are inevitable in numerical modeling of seismic wavefields, and they are usually attenuated by absorbing boundary conditions. However, the commonly used perfectly matched layer (PML) boundary condit...Edge reflections are inevitable in numerical modeling of seismic wavefields, and they are usually attenuated by absorbing boundary conditions. However, the commonly used perfectly matched layer (PML) boundary condition requires special treatment for the absorbing zone, and in three-dimensional (3D) modeling, it has to split each variable into three corresponding variables, which increases the computing time and memory storage. In contrast, the hybrid absorbing boundary condition (HABC) has the advantages such as ease of implementation, less computation time, and near-perfect absorption; it is thus able to enhance the computational efficiency of 3D elastic wave modeling. In this study, a HABC is developed from two-dimensional (2D) modeling into 3D modeling based on the I st Higdon one way wave equations, and a HABC is proposed that is suitable for a 3D elastic wave numerical simulation. Numerical simulation results for a homogenous model and a complex model indicate that the proposed HABC method is more effective and has better absorption than the traditional PML method.展开更多
Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finel...Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.展开更多
The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrodinger equation in an iterative process. However, the method provides only a ...The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrodinger equation in an iterative process. However, the method provides only a second-order accurate numerical solution and requires that the spatial grid size and time step should satisfy a very restricted condition in order to prevent the numerical solution from diverging. In this article, we present a generalized FDTD method with absorbing boundary condition for solving the one-dimensional (1D) time-dependent Schr?dinger equation and obtain a more relaxed condition for stability. The generalized FDTD scheme is tested by simulating a particle moving in free space and then hitting an energy potential. Numerical results coincide with those obtained based on the theoretical analysis.展开更多
In this paper the explanation of the mechanism of high-frequency oscillation instability resulted from absorbing boundary conditions is further improved. And we analytically prove the proposition that for one dimensio...In this paper the explanation of the mechanism of high-frequency oscillation instability resulted from absorbing boundary conditions is further improved. And we analytically prove the proposition that for one dimensional discrete model of elastic wave motion, the module of reflection factor will be greater than 1 in high frequency band when artificial wave velocity is greater than 1.5 times the ratio of discrete space step to discrete time step. Based on the proof, the frequency band in which instability occurs is discussed in detail, showing such high-frequency waves are meaningless for the numerical simulation of wave motion.展开更多
The key problem of finite-difference time-domain (FD-TD) method is the skillful application of special conditions on the boundaries of the computational domain. A new technique named Perfectly Matched Layer(PML) yield...The key problem of finite-difference time-domain (FD-TD) method is the skillful application of special conditions on the boundaries of the computational domain. A new technique named Perfectly Matched Layer(PML) yields a robust Absorbing Boundary Condition(ABC) independent of the angle of incidence and the frequency of outgoing waves. In this paper, the principle of the PML technique is briefly presented. Then some problems in the application and their settlements are discussed emphatically. Finally three numerical tests and a measured result are devoted to examine the accuracy and effectiveness of this approach.展开更多
A new absorbing boundary condition (ABC) for frequency dependent finite difference time domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (F...A new absorbing boundary condition (ABC) for frequency dependent finite difference time domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (FD) 2TD method. On the basis of digital filter designing and vector algebra, the absorbing boundary condition under arbitrary angle of incidence are derived. The transient electromagnetic problems in two dimensions and three dimensions are calculated and the validity of the ABC is verified.展开更多
An accurate numerical simulation for wave equations is essential for understanding of wave propagation in the earth's interior as well as full waveform inversion and reverse time migration. However, due to computa...An accurate numerical simulation for wave equations is essential for understanding of wave propagation in the earth's interior as well as full waveform inversion and reverse time migration. However, due to computational cost and hardware capability limitations, numerical simulations are often performed within a finite domain. Thus, an adequate absorbing boundary condition (ABC) is indispensable for obtaining accurate numerical simulation results. In this study, we develop a hybrid ABC based on a transmitting boundary, which is referred to as THABC, to eliminate artificial boundary reflections in 3D second-order fractional viscoacoustic numerical simulations. Furthermore, we propose an adaptive weighted coefficient to reconcile the transmitting and viscoacoustic wavefields in THABC. Through several numerical examples, we determine that the proposed THABC approach is characterized by the following benefits. First, with the same number of absorbing layers, THABC exhibits a better ability in eliminating boundary reflection than traditional ABC schemes. Second, THABC is more effective in computation, since it only requires the wavefields at the current and last time steps to solve the transmitting formula within the absorbing layers. Benefiting from a simple but effective combination between the transmitting equation and the second-order wave equation, our scheme performs well in the 3D fractional Laplacian viscoacoustic numerical simulation.展开更多
This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions.We prove the strict well-posedness of the resulting initial boundary value problem in 1D.Afterwards we establi...This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions.We prove the strict well-posedness of the resulting initial boundary value problem in 1D.Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme.Hereby,we have to extend the classical proofs,since the(discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.展开更多
In this paper an analytical study is carried out to examine the effectiveness of absorbing boundaries using dashpot. Validity of the absorbing boundary conditions suggested by Lysmer-Kuhle- meyer and White et al. is i...In this paper an analytical study is carried out to examine the effectiveness of absorbing boundaries using dashpot. Validity of the absorbing boundary conditions suggested by Lysmer-Kuhle- meyer and White et al. is investigated by adopting the solution of Miller and Pursey. The Miller and Pursey’s problem is then numerically simulated using the finite element method. The absorption ratios are calculated by comparing the displacements at the absorbing boundary to those at the free field without the absorbing boundary. The numerical verification is carried out through comparison of displacement at the boundary.展开更多
Boundary procedure is an important phenomenon in numerical simulation. To reduce or eliminate the spurious reflections significantly which is occurred in boundary is a challenging and vital approach. The appropriate a...Boundary procedure is an important phenomenon in numerical simulation. To reduce or eliminate the spurious reflections significantly which is occurred in boundary is a challenging and vital approach. The appropriate artificial numerical boundaries can be applied to eliminate the effect of unnecessary spurious reflections in case of the numerical simulations of wave propagation phenomena problems. Typically, to reduce the artificial reflections, the absorbing boundary conditions are necessary. In this paper, we overview and investigate the appropriate typical absorbing boundary conditions and analyzed the boundary effect of two dimensional wave equation numerically. Reflections over the wide-ranging incident angles are complicated to eliminate, but the absorbing boundary conditions that we have applied are computationally cost efficient, easy to apply and able to reduce reflections significantly. For numerical solution, finite difference method is applied to develop numerical scheme using 2D wave equation. Using the developed numerical scheme, we obtain the numerical solution of the governing equation as an initial boundary value problem and realize the qualitative behavior of the solution in infinite space. The finite difference numerical scheme has been investigated by developing MATLAB programming language code. Numerical results have been discussed and analyzed with presenting different qualitative behavior of the numerical scheme. The accuracy and efficiency of the numerical scheme has been illustrated. The stability analysis was discussed and verified stability condition. Using the numerical scheme and absorbing boundary conditions, the boundary effects and absorption of spurious reflection of boundary have been demonstrated.展开更多
A numerical model based on a boundary element method (BEM) is developed to predict the performance of two-body selfreacting floating-point absorber (SRFPA) wave energy systems that operate predominantly in heave.The k...A numerical model based on a boundary element method (BEM) is developed to predict the performance of two-body selfreacting floating-point absorber (SRFPA) wave energy systems that operate predominantly in heave.The key numerical issues in applying the BEM are systematically discussed.In particular,some improvements and simplifications in the numerical scheme are developed to evaluate the free surface Green's function,which is a main element of difficulty in the BEM.For a locked SRFPA system,the present method is compared with the existing experiment and the Reynolds-averaged NavierStokes (RANS)-based method,where it is shown that the inviscid assumption leads to substantial over-prediction of the heave response.For the unlocked SRFPA model we study in this paper,the additional viscous damping primarily induced by flow separation and vortex shedding,is modelled as a quadratic drag force,which is proportional to the square of body velocity.The inclusion of viscous drag in present method significantly improves the prediction of the heave responses and the power absorption performance of the SRFPA system,obtaining results excellent agreement with experimental data and the RANS simulation results over a broad range of incident wave periods,except near resonance in larger wave height scenarios.It is found that the wave overtopping and the re-entering impact of out-of-water floating body are observed more frequently in larger waves,where these non-linear effects are the dominant damping sources and could significantly reduce the power output and the motion responses of the SRFPA system.展开更多
We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis main...We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.展开更多
In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered gri...In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirrorimage symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.展开更多
Complex absorbing potential is usually required in a time-dependent wave packet method to accomplish the calculation in a truncated region.Usually it works effectively but becomes inefficient when the wave function in...Complex absorbing potential is usually required in a time-dependent wave packet method to accomplish the calculation in a truncated region.Usually it works effectively but becomes inefficient when the wave function involves translational energy of broad range,particularly involving ultra-low energy.In this work,a new transparent boundary condition(TBC)is proposed for the time-dependent wave packet method.It in principle is of spectral accuracy when typical discrete variable representations are applied.The prominent merit of the new TBC is that its accuracy is insensitive to the translational energy distribution of the wave function,in contrast with the complex absorbing potential.Application of the new TBC is given to one-dimensional particle wave packet scatterings from a barrier with a potential well,which supports resonances states.展开更多
文摘The objective of this paper is to present a new method for designing absorbing or non-reflective boundary conditions (ABC) or (NRBC), illustrated by the case study of the modelling of a solid body in water, specifically the capillary gravity waves generated by its motion at the surface. The study analyses the flow of an inviscid, barotropic, and compressible fluid around the stationary solid body. The dynamic behaviour of the fluid is analysed using a two-dimensional coupled Neumann-Kelvin model extended with capillarity and inertia terms. For computational purposes, it is necessary to truncate the unbounded spatial domain with artificial boundaries and then introduce appropriate absorbing boundary conditions. The propagation of short wavelength waves in a convective fluid medium with significant differences in properties between the interior and the surface of the fluid presents a number of difficulties in the design of these conditions. The results are illustrated numerically and commented upon.
基金supported by the National Nature Science Foundation of China(Grant No.U1262208)the Important National Science & Technology Specific Projects(Grant No.2011ZX05019-008)
文摘We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金The National Natural Science Foundation of China(No.60702027)the Free Research Fund of the National Mobile Communications Research Laboratory of Southeast University (No.2008B07)the National Basic Research Program of China(973 Program)(No.2007CB310603)
文摘With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) method. The reflection of the ABC caused by both the truncated error and the phase velocity error is analyzed. Based on the phase velocity estimation and the nonuniform cell, two methods are studied and then adopted to improve the performance of the ABC. A calculation case of a rectangular waveguide which is a typical dispersive transmission line is carried out using the ADI-FDTD method with the improved ABC for evaluation. According to the calculated case, the comparison is given between the reflection coefficients of the ABC with and without the velocity estimation and also the comparison between the reflection coefficients of the ABC with and without the nonuniform processing. The reflection variation of the ABC under different time steps is also analyzed and the acceptable worsening will not obscure the improvement on the absorption. Numerical results obviously show that efficient improvement on the absorbing performance of the ABC is achieved based on these methods for the ADI-FDTD.
基金sponsored by the Chinese National Development and Reform Commission(No.[2005]2372)the Innovative Technological Research Foundation of PetroChina Company Limited(No.060511-1-3)
文摘In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best available ABC. However, the traditional splitting PML (SPML) ABC has some serious disadvantages: for example, global SPML ABCs require much more computing memory, although the implementation is easy. The implementation of local SPML ABCs also has some difficulties, since edges and corners must be considered. The traditional non-splitting perfectly matched layer (NPML) ABC has complex computation because of the convolution. In this paper, based on non-splitting perfectly matched layer (NPML) ABCs combined with the complex frequency-shifted stretching function (CFS), we introduce a novel numerical implementation method for PML absorbing boundary conditions with simple calculation equations, small memory requirement, and easy programming.
基金supported jointly by the 973 Program (Grant No.2007CB209505)the National Natural Science Fund (Grant No.40704019,40674061)+1 种基金the School Basic Research Fund of Tsinghua University (JC2007030)PetroChina Innovation Fund (Grant No.060511-1-1)
文摘When modeling wave propagation in infinite space, it is necessary to have stable absorbing boundaries to effectively eliminate spurious reflections from the truncation boundaries. The SH wave equations for Perfectly Matched Layers (PML) are deduced and their Crank-Nicolson scheme are presented in this paper. We use the second-, sixth-, and tenth-order finite difference and pseudo-spectral algorithms to compute the spatial derivatives. Two numerical models, a homogeneous isotropic medium and a multi-layer model with a cave, are designed to investigate how the absorbing boundary width and the algorithms determine PML effects. Numerical results show that, for PML, the low-order finite difference algorithms have fairly good absorbing effects when the absorbing boundary is thin, whereas, high-order algorithms always have good absorption when the boundary is thick. Finally, we discuss the reflection coefficient and point out its shortcomings, which is why we use the SNR to quantitatively scale the PML effects,
基金supported by the National Natural Science Foundation of China(No.41474110)
文摘Edge reflections are inevitable in numerical modeling of seismic wavefields, and they are usually attenuated by absorbing boundary conditions. However, the commonly used perfectly matched layer (PML) boundary condition requires special treatment for the absorbing zone, and in three-dimensional (3D) modeling, it has to split each variable into three corresponding variables, which increases the computing time and memory storage. In contrast, the hybrid absorbing boundary condition (HABC) has the advantages such as ease of implementation, less computation time, and near-perfect absorption; it is thus able to enhance the computational efficiency of 3D elastic wave modeling. In this study, a HABC is developed from two-dimensional (2D) modeling into 3D modeling based on the I st Higdon one way wave equations, and a HABC is proposed that is suitable for a 3D elastic wave numerical simulation. Numerical simulation results for a homogenous model and a complex model indicate that the proposed HABC method is more effective and has better absorption than the traditional PML method.
基金This work is supported in part by the National Natural Science Foundation of China(U19B6003-04-01,42204132,41874130)R&D Department of CNPC(2022DQ0604-01)China Postdoctoral Science Foundation(2020M680667,2021T140661).
文摘Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.
文摘The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrodinger equation in an iterative process. However, the method provides only a second-order accurate numerical solution and requires that the spatial grid size and time step should satisfy a very restricted condition in order to prevent the numerical solution from diverging. In this article, we present a generalized FDTD method with absorbing boundary condition for solving the one-dimensional (1D) time-dependent Schr?dinger equation and obtain a more relaxed condition for stability. The generalized FDTD scheme is tested by simulating a particle moving in free space and then hitting an energy potential. Numerical results coincide with those obtained based on the theoretical analysis.
基金Basic Scientific Research-related Project from Institute of Engineering Mechanics (01180001 and 2007C01)
文摘In this paper the explanation of the mechanism of high-frequency oscillation instability resulted from absorbing boundary conditions is further improved. And we analytically prove the proposition that for one dimensional discrete model of elastic wave motion, the module of reflection factor will be greater than 1 in high frequency band when artificial wave velocity is greater than 1.5 times the ratio of discrete space step to discrete time step. Based on the proof, the frequency band in which instability occurs is discussed in detail, showing such high-frequency waves are meaningless for the numerical simulation of wave motion.
基金Supported by the National Natural Science Foundation of China
文摘The key problem of finite-difference time-domain (FD-TD) method is the skillful application of special conditions on the boundaries of the computational domain. A new technique named Perfectly Matched Layer(PML) yields a robust Absorbing Boundary Condition(ABC) independent of the angle of incidence and the frequency of outgoing waves. In this paper, the principle of the PML technique is briefly presented. Then some problems in the application and their settlements are discussed emphatically. Finally three numerical tests and a measured result are devoted to examine the accuracy and effectiveness of this approach.
文摘A new absorbing boundary condition (ABC) for frequency dependent finite difference time domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (FD) 2TD method. On the basis of digital filter designing and vector algebra, the absorbing boundary condition under arbitrary angle of incidence are derived. The transient electromagnetic problems in two dimensions and three dimensions are calculated and the validity of the ABC is verified.
基金National Natural Science Foundation of China under Grant Nos.41930431 and 41974116Natural Science Foundation of Heilongjiang Province No.YQ2021D008CNPC Innovation Found No.2021DQ02-0302 for supporting this work.
文摘An accurate numerical simulation for wave equations is essential for understanding of wave propagation in the earth's interior as well as full waveform inversion and reverse time migration. However, due to computational cost and hardware capability limitations, numerical simulations are often performed within a finite domain. Thus, an adequate absorbing boundary condition (ABC) is indispensable for obtaining accurate numerical simulation results. In this study, we develop a hybrid ABC based on a transmitting boundary, which is referred to as THABC, to eliminate artificial boundary reflections in 3D second-order fractional viscoacoustic numerical simulations. Furthermore, we propose an adaptive weighted coefficient to reconcile the transmitting and viscoacoustic wavefields in THABC. Through several numerical examples, we determine that the proposed THABC approach is characterized by the following benefits. First, with the same number of absorbing layers, THABC exhibits a better ability in eliminating boundary reflection than traditional ABC schemes. Second, THABC is more effective in computation, since it only requires the wavefields at the current and last time steps to solve the transmitting formula within the absorbing layers. Benefiting from a simple but effective combination between the transmitting equation and the second-order wave equation, our scheme performs well in the 3D fractional Laplacian viscoacoustic numerical simulation.
文摘This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions.We prove the strict well-posedness of the resulting initial boundary value problem in 1D.Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme.Hereby,we have to extend the classical proofs,since the(discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.
文摘In this paper an analytical study is carried out to examine the effectiveness of absorbing boundaries using dashpot. Validity of the absorbing boundary conditions suggested by Lysmer-Kuhle- meyer and White et al. is investigated by adopting the solution of Miller and Pursey. The Miller and Pursey’s problem is then numerically simulated using the finite element method. The absorption ratios are calculated by comparing the displacements at the absorbing boundary to those at the free field without the absorbing boundary. The numerical verification is carried out through comparison of displacement at the boundary.
文摘Boundary procedure is an important phenomenon in numerical simulation. To reduce or eliminate the spurious reflections significantly which is occurred in boundary is a challenging and vital approach. The appropriate artificial numerical boundaries can be applied to eliminate the effect of unnecessary spurious reflections in case of the numerical simulations of wave propagation phenomena problems. Typically, to reduce the artificial reflections, the absorbing boundary conditions are necessary. In this paper, we overview and investigate the appropriate typical absorbing boundary conditions and analyzed the boundary effect of two dimensional wave equation numerically. Reflections over the wide-ranging incident angles are complicated to eliminate, but the absorbing boundary conditions that we have applied are computationally cost efficient, easy to apply and able to reduce reflections significantly. For numerical solution, finite difference method is applied to develop numerical scheme using 2D wave equation. Using the developed numerical scheme, we obtain the numerical solution of the governing equation as an initial boundary value problem and realize the qualitative behavior of the solution in infinite space. The finite difference numerical scheme has been investigated by developing MATLAB programming language code. Numerical results have been discussed and analyzed with presenting different qualitative behavior of the numerical scheme. The accuracy and efficiency of the numerical scheme has been illustrated. The stability analysis was discussed and verified stability condition. Using the numerical scheme and absorbing boundary conditions, the boundary effects and absorption of spurious reflection of boundary have been demonstrated.
基金We would like to acknowledge the National Natural Science Foundation of China(Grants 51479114,51761135012)for supporting this work.
文摘A numerical model based on a boundary element method (BEM) is developed to predict the performance of two-body selfreacting floating-point absorber (SRFPA) wave energy systems that operate predominantly in heave.The key numerical issues in applying the BEM are systematically discussed.In particular,some improvements and simplifications in the numerical scheme are developed to evaluate the free surface Green's function,which is a main element of difficulty in the BEM.For a locked SRFPA system,the present method is compared with the existing experiment and the Reynolds-averaged NavierStokes (RANS)-based method,where it is shown that the inviscid assumption leads to substantial over-prediction of the heave response.For the unlocked SRFPA model we study in this paper,the additional viscous damping primarily induced by flow separation and vortex shedding,is modelled as a quadratic drag force,which is proportional to the square of body velocity.The inclusion of viscous drag in present method significantly improves the prediction of the heave responses and the power absorption performance of the SRFPA system,obtaining results excellent agreement with experimental data and the RANS simulation results over a broad range of incident wave periods,except near resonance in larger wave height scenarios.It is found that the wave overtopping and the re-entering impact of out-of-water floating body are observed more frequently in larger waves,where these non-linear effects are the dominant damping sources and could significantly reduce the power output and the motion responses of the SRFPA system.
基金the Fundamental Research Funds for the Central Universities(Grant No.2024MS126).
文摘We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No. 41074100)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No. NCET-10-0812)
文摘In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirrorimage symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.
基金supported by the National Natural Science Foundation of China (No.21733006,No.21825303 and No.21688102)the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDB17010200).
文摘Complex absorbing potential is usually required in a time-dependent wave packet method to accomplish the calculation in a truncated region.Usually it works effectively but becomes inefficient when the wave function involves translational energy of broad range,particularly involving ultra-low energy.In this work,a new transparent boundary condition(TBC)is proposed for the time-dependent wave packet method.It in principle is of spectral accuracy when typical discrete variable representations are applied.The prominent merit of the new TBC is that its accuracy is insensitive to the translational energy distribution of the wave function,in contrast with the complex absorbing potential.Application of the new TBC is given to one-dimensional particle wave packet scatterings from a barrier with a potential well,which supports resonances states.