In order to investigate water and chloride ion transport in damaged concrete, three types of concrete were prepared, freeze-thawing(F-T) cycling and compressive loading were adopted to induce damage to concrete. Ult...In order to investigate water and chloride ion transport in damaged concrete, three types of concrete were prepared, freeze-thawing(F-T) cycling and compressive loading were adopted to induce damage to concrete. Ultrasonic pulse velocity technique was used for evaluating the damage degree of concrete, and the defects of damaged concrete were also detected by X-CT. Water absorption and chloride ion penetrability were used for describing the transport properties of damaged concrete. Effects of damage degree on the water absorption rate and chloride ion penetrability were investigated in detail and the relationships were also established. The results show that the water absorption of concrete makes various responses to damage degree due to the difference of concrete type and damage method. For same concrete with similar damage degree, the water absorption rate of F-T damaged concrete is usually larger than that of concrete damaged by loading. The chloride ion penetrability of damaged concrete increases linearly with increasing damage degree, which is more sensitive to damage degree if the original penetrability of sound concrete is higher.展开更多
Optical absorption of Ar and H ion beam irradiated multi-walled carbon nanotube (MWCNT) sheets at various doses in the visible and terahertz spectral ranges was investigated.It was found that the optical absorption of...Optical absorption of Ar and H ion beam irradiated multi-walled carbon nanotube (MWCNT) sheets at various doses in the visible and terahertz spectral ranges was investigated.It was found that the optical absorption of MWCNT sheets in the visible range was decreased with increasing ion irradiation dose.Similar behavior was observed in terahertz range,where the optical absorption of MWCNT sheets in the range of 0 to 1.5 THz was also decreased with increasing ion irradiation dose.The optical absorption decreases in irradiated MWCNT sheets can be ascribed to the increase of defects in the irradiated MWCNTs.展开更多
Optical absorption spectra of the mixed crystals of KBr1-xIx:Tl+ crystals studied at room temperature are reported.The absorption spectra indicated the appearance of additional bands on the low energy side of the Char...Optical absorption spectra of the mixed crystals of KBr1-xIx:Tl+ crystals studied at room temperature are reported.The absorption spectra indicated the appearance of additional bands on the low energy side of the Characteristic A,B and C absorption bands of KBr:Tl+ single crystals with increasing iodine composition.Comparing with earlier reports,the additional bands were attributed to the complex Tl+centers in the mixed configuration surrounded by Br-and I-ions as nearest neighbors.The absorption spectra of gamma irradiated mixed crystals showed F band,which shifts towards low energy side with the composition of iodine ions in the mixed crystals.展开更多
The results of optical absorption analysis of the synthetic diamonds(type Ib) which were implanted with 40 keV molecular hydrogen ions at doses of 10^15-10^17H/cm^2(at 100K),showed that the increase of optical density...The results of optical absorption analysis of the synthetic diamonds(type Ib) which were implanted with 40 keV molecular hydrogen ions at doses of 10^15-10^17H/cm^2(at 100K),showed that the increase of optical density(OD) of modified layer(-140nm) in UV-VIS region was dependent upon the damage level caused by ion implantation process.The range of relative optical band gap(Er.opt) around 2.0eV suggested that an amorphous carbon network structure like a-C film,which probably contains some localized subtetrabedral-coordinated clusters embedded in the fourflod(sp^3) sites.was tentatively found in this layer,basing on the optical gap of carbon materials.The evolution of Er,opt with ion fluence indicated that no more hydrogenated carbon compositions were produced in as -implanted samples,while the increase of Er,opt with annealing temperature was very similar to that of hydrogen content dependence of Eopt in hydrogenately amorphous carbon(a-C:H):In addition the optical inhomogeneity of type Ib diamond has been revealed by a 2-dimension topograph in transmission mode at λ=430nm。展开更多
We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photo...We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.展开更多
Improving the up-conversion luminescence efficiency crucial in several related application areas. In this work, of rare-earth ions via the multi-photon absorption process is we theoretically propose a feasible scheme ...Improving the up-conversion luminescence efficiency crucial in several related application areas. In this work, of rare-earth ions via the multi-photon absorption process is we theoretically propose a feasible scheme to enhance the resonance-mediated two-photon absorption in Er3+ ions by shaping the femtosecond laser field with a rectangle phase modulation. Our theoretical results show that the resonance-mediated two-photon absorption can be decomposed into the on-resonant and near-resonant parts, and the on-resonant part mainly comes from the contribution of laser central frequency components, while the near-resonant part mainly results from the excitation of low and high laser frequency components. So, the rectangle phase modulation can induce a constructive interference between the two parts by properly designing the modulation depth and width, and finally realizes the resonance-mediated two-photon absorption enhancement. More- over, our results also show that the enhancement efficiency of resonance-mediated two-photon absorption depends on the laser pulse width (or laser spectral bandwidth), final state transition frequency, and intermediate and final state absorption bandwidths. The enhancement efficiency modulation can be attributed to the relative weight manipulation of on-resonant and near-resonant two-photon absorption in the whole excitation process. This study presents a clear physical insight for the quantum control of resonance-mediated two-photon absorption in the rare-earth ions, and there will be an important significance for improving the up-conversion luminescence efficiency of rare-earth ions.展开更多
One-photon absorption and two-photon absorption(TPA) properties of three tris(picolyl)amine-based zinc ion sensors are investigated by employing the density functional response theory in combination with the polar...One-photon absorption and two-photon absorption(TPA) properties of three tris(picolyl)amine-based zinc ion sensors are investigated by employing the density functional response theory in combination with the polarizable continuum model.The different isomer and coordination geometry of each probe are taken into account. Special emphasis is placed on the effects of isomerism and the coordination mode on the optical properties. The intra-molecular charge transfer(ICT)properties are specified by natural bond orbital charge analysis. It is shown that the isomerism has non-negligible effects on TPA properties of free ligands. It is found that both the TPA wavelength and the cross section are highly dependent on the coordination mode. When the zinc ion connects with the picolyl unit in the middle of a ligand, the zinc complex has a large TPA intensity in a long wavelength range due to the increased ICT mechanism.展开更多
The absorption cross section σ<sub>abs</sub> of J/ψ produced in relativistic heavy ioncollisions is deduced based on the analysis of the absorption length through which theproduced J/ψ passes in the col...The absorption cross section σ<sub>abs</sub> of J/ψ produced in relativistic heavy ioncollisions is deduced based on the analysis of the absorption length through which theproduced J/ψ passes in the colliding nuclei.The obtained σ<sub>abs</sub> in A-A collisions is con-siderably higher than that in h-A processes.The reason for this different result is dis-cussed in terms of an analysis of the p<sub>T</sub>-dependence of the produced J/ψ.展开更多
An experiment system of ceramic-cup microwave ion source has been built here. Its microwave absorption efficiency as a function of the magnetic field and the pressure is presented. When the microwave incident power is...An experiment system of ceramic-cup microwave ion source has been built here. Its microwave absorption efficiency as a function of the magnetic field and the pressure is presented. When the microwave incident power is 300-500W the microwave absorption efficiencies are more than 90% if the system is optimized and the magnetic field at the microwave window is 0.095T.展开更多
A comparative research has been developed for acidity and stability constants of M(TTA)1 and M(Asp)2 complexes which have been determined by potentiometric pH titration. Depending on metal ion–binding properties, vit...A comparative research has been developed for acidity and stability constants of M(TTA)1 and M(Asp)2 complexes which have been determined by potentiometric pH titration. Depending on metal ion–binding properties, vital differences in building complex were observed. The present study shows that in M(TTA) complexes, metal ions are coordinated to the carboxyl groups, but in M(Asp) some metal ions are able to build macrochelate over amine group. Hence, the following intermolecular and as a result independent concentration equilibrium between an open–isomer M(Asp)op and a closed–isomer M(Asp)cl, has to be considered cl op. The amounts are reported. The results mentioned above demonstrate that for some M(Asp) complexes the stability constants is also largely determined by the affinity of metal ions for amine group. This leads to a kind of selectivity of metal ions and transfer them via building complexes with the aspartate. The result of this effect is a higher dosage-absorption of minerals in body. Based on the sort of metal ions, the drug-therapy can be different. For heavy metal ions this building complex helps the absorption and filtration of the blood plasma, and consequently the excursion of heavy metal ions takes place. This is an important method in microdialysis. Other metal ions such as the complexes can be considered as mineral carriers. These complexes in certain conditions (PH–range) can release the minerals in body.展开更多
[Objective] The purpose was to discuss the effects of different NaCl concentrations on fresh weight and dry weight,ion absorption and distribution in oil sunflower seedlings. [Method] Under the simulated salt environm...[Objective] The purpose was to discuss the effects of different NaCl concentrations on fresh weight and dry weight,ion absorption and distribution in oil sunflower seedlings. [Method] Under the simulated salt environment by using NaCl solutions at different concentrations,the dry weight,fresh weight and ion content of oil sunflower seedlings were determined. [Result] With the increase of NaCl concentration,the growth rate of oil sunflower seedling was inhibited. In addition,its fresh weight and dry weight also decreased; the fresh weight of leaf decreased most significantly by 60%,and that of cotyledon decreased most slightly by 13% at 200 mmol/L NaCl concentration. The dry weight of root,stem,leaf and cotyledon decreased by 35%,39%,55% and 8% respectively,showing a similar decreasing trend with fresh weight. Under NaCl stress,Na+ content in root and stem of oil sunflower seedling increased while K+ decreased. Na+ content was mainly concentrated in roots and stems much more than in leaves; K+ content in roots decreased most significantly by 21% compared with control,and it was relatively high in leaf. Ca2+ and Mg2+ content was decreased slightly in roots and stems; Ca2+ content in leaves and cotyledons was stable; Mg2+ content was slightly increased. [Conclusion] Oil sunflower maintained high mineral ion absorptionunder salt stress,that maybe the part reason for high salt tolerance of oil sunflower seedlings.展开更多
Ge^+ ions are implanted into fused silica glass at room temperature and a fluence of 1 × 10^17 cm^-2. The as-implanted samples are annealed in O2, N2 and Ar atmospheres separately. Ge^0, GeO and GeO2 coexist in ...Ge^+ ions are implanted into fused silica glass at room temperature and a fluence of 1 × 10^17 cm^-2. The as-implanted samples are annealed in O2, N2 and Ar atmospheres separately. Ge^0, GeO and GeO2 coexist in the as-implanted and annealed samples. Annealing in different atmospheres at 600℃ leads each composite to change its content. After annealing at 1000℃, there remains some amount of Ge^0 in the substrates. However, the content of Ge decreases due to out-diffusion. After annealing in N2, Si N composite is formed. The absorption peak of GeO appears at 240 nm after annealing in O2 atmosphere, and a new absorption peak occurs at 418 nm after annealing in N2 atmosphere, which is attributed to the Si N composite. There is no absorption peak appearing after annealing in Ar atmosphere. Transmission electron microscopic images confirm the formation of Ge nanoparticles in the as-implanted sample and GeO2 nanoparticles in the annealed sample. In the present study, the GeO content and the GeO2 content depend on annealing temperature and atmosphere. Three photolumineseence emission band peaks at 290, 385 and 415 nm appear after ion implantation and they become strong with the increase of annealing temperature below 700℃ and their photoluminescences recover to the values of as-grown samples after annealing at 700℃. Optical absorption and photoluminescence depend on the annealing temperature and atmosphere.展开更多
The microwave absorption efficiency, which is relevant to magnet field and its distribution, is a major parameter of the microwave ion source (MWIS) for the intense neutron tube. Based on previous work, the relations ...The microwave absorption efficiency, which is relevant to magnet field and its distribution, is a major parameter of the microwave ion source (MWIS) for the intense neutron tube. Based on previous work, the relations between microwave absorption efficiency and plasma chamber structure and thickness of the microwave introduction window are studied. The microwave absorption efficiency reaches to 100% when plasma chamber is 100mm long and the window thickness is 30mm. The microwave absorption efficiency as a function of pressure is also presented.展开更多
The effect of Er3+ ion concentration on transient and steady-state behavior in 45-nm Er3+ :YAG crystal is investigated. It is shown that by changing the signal field, the coherent field and the concentration of Er3...The effect of Er3+ ion concentration on transient and steady-state behavior in 45-nm Er3+ :YAG crystal is investigated. It is shown that by changing the signal field, the coherent field and the concentration of Er3+ ions in the crystal, the absorption, dispersion, and group index of the weak probe field can be adjusted. Also, it is found that the probe absorption occurs in the presence of population inversion and probe amplification is obtained in the absence of population inversion.展开更多
The UV spectra of sodium aluminate solutions were obtained in the sodium oxide concentration range from 59 to 409 g/L and the caustic ratio range from 1.5 to 4.0 to reveal the structure characteristics of them. It is ...The UV spectra of sodium aluminate solutions were obtained in the sodium oxide concentration range from 59 to 409 g/L and the caustic ratio range from 1.5 to 4.0 to reveal the structure characteristics of them. It is found that a new peak appears at about 370 nm besides peaks at about 220 and 266 nm in all solutions. The new peak is strongly favored by high hydroxide concentration and high caustic ratio. And it only appears when the solutions are prepared by dissolving sodium hydroxide and aluminum hydroxide. In addition, the IR and Raman spectra of sodium aluminate solutions with high alkali concentration and high caustic ratio were measured, and the UV spectra of aqueous solutions of Al( H2O )36+and AlF 36?were measured as well. According to the crystal field theory in coordination chemistry as well as the above spectra characteristics, this new peak at about 370 nm is determined as the evidence of a new species of aluminate ion with a coordination number of 6.展开更多
The multi-charged sulfur ions of Sq^+ (q ≤ 6) have been generated when hydrogen sulfide cluster beams are irradiated by a nanosecond laser of 1064 and 532 nm with an intensity of 10^10- 10^12W.cm^-2. S^6+ is the ...The multi-charged sulfur ions of Sq^+ (q ≤ 6) have been generated when hydrogen sulfide cluster beams are irradiated by a nanosecond laser of 1064 and 532 nm with an intensity of 10^10- 10^12W.cm^-2. S^6+ is the dominant multicharged species at 1064 nm, while S^4+, S^3+ and S^2+ ions are the main multi-charged species at 532 nm. A three-step model (i.e., multiphoton ionization triggering, inverse bremsstrahlung heating, electron collision ionizing) is proposed to explain the generation of these multi-charged ions at the laser intensity stated above. The high ionization level of the clusters and the increasing charge state of the ion products with increasing laser wavelength are supposed mainly due to the rate-limiting step, i.e., electron heating by absorption energy from the laser field via inverse bremsstrahlung, which is proportional to λ2,λA being the laser wavelength.展开更多
The underground disposal of waste arising from the nuclear industry needs constant evaluation in order to improve upon it through minimizing the volume and cost by reducing the amount of glass used without compromisin...The underground disposal of waste arising from the nuclear industry needs constant evaluation in order to improve upon it through minimizing the volume and cost by reducing the amount of glass used without compromising the safety of any leakage from the radioactive waste form. The immobilization of the spent resin (NRW-40) in borosilicate glass was investigated to meet the acceptance criteria for disposal of nuclear waste. The organic mixed bed resin in granular form was used as a waste target. The analysis of surrogate resin doped with radioactive and non-radioactive cesium (Cs) and cobalt (Co) was carried out to investigate their thermal and chemical properties and their compatibility with an alkaline borosilicate glass. The thermal analysis indicates that the structural damage caused by 1 mSv gamma radiation to the radioactive resin has altered its properties in comparison with the non-radioactive resin, same amount of cesium (8.88 wt%) and cobalt (1.88 wt%) were used in both resins. The immobilization of residue shows that the excess sulfur in the residue caused phase crystallization in the final glass matrix. It was found that the volatilization of Cs-137 and Co-60 from the successful radioactive resin-glass matrix (HG-3-IER-500) were more than that in the non-radioactive resin-glass matrix (HG-3-IEX-500). The study demonstrates comprehensive experimental and analytical works and shows that it is possible to minimise the volume of the waste while keeping the required safety levels, however further research needs to be carried out in this area.展开更多
High efficient removal and recovery of uranium and thorium from nuclear waste solution are essential for environmental preservation and fuel recycle. A new polymer fiber adsorbent (UHMEPE-g-PAO fiber), prepared by ami...High efficient removal and recovery of uranium and thorium from nuclear waste solution are essential for environmental preservation and fuel recycle. A new polymer fiber adsorbent (UHMEPE-g-PAO fiber), prepared by amidoximation of grafted polyacrylonitrile onto Ultra High Molecular Weight Polyethylene (UHMWPE) fiber, was used to remove the uranyl and thorium ions from acid aqueous solutions and its performance was carefully investigated. It was found that uranyl ion can penetrate the fiber through the connected pore structures, forming (UO2) (R-C(NH2)-NO)2 chelates with the amidoxime groups within the fiber. Two amidoxime groups (U-N and U-Oeq) and two water molecules (U-Oeq2) are bound to uranyl ion in the fiber. On the contrary, thorium ions are adsorbed mainly on the fiber surface in the form of Th(OH)4 precipitate that blocks the entrance of Th4+ ion into fiber pores. The maximum included other two capacities of uranyl and thorium ions were estimated to be 262.01 mg/g and 160 mg/g at room temperature with pH 3.0, respectively. The results also indicate that the UHMWPE-g-PAO fiber has higher adsorption selectivity for uranyl ion than thorium ion. Uranium and thorium oxide particles were obtained as the ultimate product after sintering of the fiber adsorbent. This novel and environmentally friendly adsorption process is feasible to extract uranium or thorium from acidic aqueous solution.展开更多
The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with res...The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with response functions.The responsive mechanism is explored. It is found that the calculated OPA and TPA properties are quite consistent with experimental data. Because the intra-molecular charge transfer(ICT) increases upon zinc ion binding, the TPA intensity is enhanced dramatically. According to the model sensor, we design a series of zinc ion probes which differ by conjugation center, acceptor and donor moieties. The properties of OPA, emission and TPA of the designed molecules are calculated at the same computational level. Our results demonstrate that the OPA and emission wavelengths of the designed probes have large red-shifts after zinc ions have been bound. Comparing with the model sensor, the TPA intensities of the designed probes are enhanced significantly and the absorption positions are red-shifted to longer wavelength range. Furthermore, the TPA intensity can be improved greatly upon zinc ion binding due to the increased ICT mechanism. These compounds are potential excellent candidates for two-photon fluorescent zinc ion probes.展开更多
Nessler's reagent spectrophotometry,gas phase molecular absorption spectrometry and ion chromatography were respectively used to determine ammonia nitrogen in surface water.The detection limit,precision,accuracy a...Nessler's reagent spectrophotometry,gas phase molecular absorption spectrometry and ion chromatography were respectively used to determine ammonia nitrogen in surface water.The detection limit,precision,accuracy and recovery rate of the three methods were compared,and the determination results of the actual water samples were analyzed by t test.The results showed that the three methods all could meet the requirement of the laboratory quality control,and there was no significant difference in the determination results.Compared with Nessler's reagent spectrophotometry,the operation of gas phase molecular absorption spectrometry and ion chromatography operation was more convenient and fast and has no pollution,which can be used for the determination of ammonia nitrogen content in a large quantity of surface water samples.展开更多
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2015CB655102)the National Natural Science Foundation of China(Nos.51178106,51378116&51408597)the Scientific and Technological Research and Development plan of China Railway Corporation(No.2013G001-A-2)
文摘In order to investigate water and chloride ion transport in damaged concrete, three types of concrete were prepared, freeze-thawing(F-T) cycling and compressive loading were adopted to induce damage to concrete. Ultrasonic pulse velocity technique was used for evaluating the damage degree of concrete, and the defects of damaged concrete were also detected by X-CT. Water absorption and chloride ion penetrability were used for describing the transport properties of damaged concrete. Effects of damage degree on the water absorption rate and chloride ion penetrability were investigated in detail and the relationships were also established. The results show that the water absorption of concrete makes various responses to damage degree due to the difference of concrete type and damage method. For same concrete with similar damage degree, the water absorption rate of F-T damaged concrete is usually larger than that of concrete damaged by loading. The chloride ion penetrability of damaged concrete increases linearly with increasing damage degree, which is more sensitive to damage degree if the original penetrability of sound concrete is higher.
基金Supported by Chinese Academy of Sciences Knowledge Innovation Program(No.KJCX3.SYW.N10)National Natural Science Foundation of China(No.10775171)
文摘Optical absorption of Ar and H ion beam irradiated multi-walled carbon nanotube (MWCNT) sheets at various doses in the visible and terahertz spectral ranges was investigated.It was found that the optical absorption of MWCNT sheets in the visible range was decreased with increasing ion irradiation dose.Similar behavior was observed in terahertz range,where the optical absorption of MWCNT sheets in the range of 0 to 1.5 THz was also decreased with increasing ion irradiation dose.The optical absorption decreases in irradiated MWCNT sheets can be ascribed to the increase of defects in the irradiated MWCNTs.
基金the All India Council for Technical Education (AICTE),New Delhi,India for granting funds for this investigation under TAPTEC scheme vide project File(No.8018/RDII/BOR/TAP(371)/99-2000)
文摘Optical absorption spectra of the mixed crystals of KBr1-xIx:Tl+ crystals studied at room temperature are reported.The absorption spectra indicated the appearance of additional bands on the low energy side of the Characteristic A,B and C absorption bands of KBr:Tl+ single crystals with increasing iodine composition.Comparing with earlier reports,the additional bands were attributed to the complex Tl+centers in the mixed configuration surrounded by Br-and I-ions as nearest neighbors.The absorption spectra of gamma irradiated mixed crystals showed F band,which shifts towards low energy side with the composition of iodine ions in the mixed crystals.
文摘The results of optical absorption analysis of the synthetic diamonds(type Ib) which were implanted with 40 keV molecular hydrogen ions at doses of 10^15-10^17H/cm^2(at 100K),showed that the increase of optical density(OD) of modified layer(-140nm) in UV-VIS region was dependent upon the damage level caused by ion implantation process.The range of relative optical band gap(Er.opt) around 2.0eV suggested that an amorphous carbon network structure like a-C film,which probably contains some localized subtetrabedral-coordinated clusters embedded in the fourflod(sp^3) sites.was tentatively found in this layer,basing on the optical gap of carbon materials.The evolution of Er,opt with ion fluence indicated that no more hydrogenated carbon compositions were produced in as -implanted samples,while the increase of Er,opt with annealing temperature was very similar to that of hydrogen content dependence of Eopt in hydrogenately amorphous carbon(a-C:H):In addition the optical inhomogeneity of type Ib diamond has been revealed by a 2-dimension topograph in transmission mode at λ=430nm。
基金Supported by the National Natural Science Foundation of China under Grant Nos 51132004,11474096,11604199,U1704145 and 11747101the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500+1 种基金the Henan Provincial Natural Science Foundation of China under Grant No 182102210117the Higher Education Key Program of He’nan Province of China under Grant Nos 17A140025 and 16A140030
文摘We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.
基金Project supported by the National Natural Science Foundation of China(Grant No.11474096)the Science and Technology Commission of Shanghai Municipality,China(Grant Nos.14JC1401500,17ZR146900,and 16520721200)the Higher Education Key Program of He'nan Province of China(Grant No.17A140025)
文摘Improving the up-conversion luminescence efficiency crucial in several related application areas. In this work, of rare-earth ions via the multi-photon absorption process is we theoretically propose a feasible scheme to enhance the resonance-mediated two-photon absorption in Er3+ ions by shaping the femtosecond laser field with a rectangle phase modulation. Our theoretical results show that the resonance-mediated two-photon absorption can be decomposed into the on-resonant and near-resonant parts, and the on-resonant part mainly comes from the contribution of laser central frequency components, while the near-resonant part mainly results from the excitation of low and high laser frequency components. So, the rectangle phase modulation can induce a constructive interference between the two parts by properly designing the modulation depth and width, and finally realizes the resonance-mediated two-photon absorption enhancement. More- over, our results also show that the enhancement efficiency of resonance-mediated two-photon absorption depends on the laser pulse width (or laser spectral bandwidth), final state transition frequency, and intermediate and final state absorption bandwidths. The enhancement efficiency modulation can be attributed to the relative weight manipulation of on-resonant and near-resonant two-photon absorption in the whole excitation process. This study presents a clear physical insight for the quantum control of resonance-mediated two-photon absorption in the rare-earth ions, and there will be an important significance for improving the up-conversion luminescence efficiency of rare-earth ions.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2014AM026)the Taishan Scholar Project of Shandong Province,China
文摘One-photon absorption and two-photon absorption(TPA) properties of three tris(picolyl)amine-based zinc ion sensors are investigated by employing the density functional response theory in combination with the polarizable continuum model.The different isomer and coordination geometry of each probe are taken into account. Special emphasis is placed on the effects of isomerism and the coordination mode on the optical properties. The intra-molecular charge transfer(ICT)properties are specified by natural bond orbital charge analysis. It is shown that the isomerism has non-negligible effects on TPA properties of free ligands. It is found that both the TPA wavelength and the cross section are highly dependent on the coordination mode. When the zinc ion connects with the picolyl unit in the middle of a ligand, the zinc complex has a large TPA intensity in a long wavelength range due to the increased ICT mechanism.
基金The project partly supported by the National Natural Science Foundation of China
文摘The absorption cross section σ<sub>abs</sub> of J/ψ produced in relativistic heavy ioncollisions is deduced based on the analysis of the absorption length through which theproduced J/ψ passes in the colliding nuclei.The obtained σ<sub>abs</sub> in A-A collisions is con-siderably higher than that in h-A processes.The reason for this different result is dis-cussed in terms of an analysis of the p<sub>T</sub>-dependence of the produced J/ψ.
基金Innovation fund for technology-based small firms (99C26212210085)
文摘An experiment system of ceramic-cup microwave ion source has been built here. Its microwave absorption efficiency as a function of the magnetic field and the pressure is presented. When the microwave incident power is 300-500W the microwave absorption efficiencies are more than 90% if the system is optimized and the magnetic field at the microwave window is 0.095T.
文摘A comparative research has been developed for acidity and stability constants of M(TTA)1 and M(Asp)2 complexes which have been determined by potentiometric pH titration. Depending on metal ion–binding properties, vital differences in building complex were observed. The present study shows that in M(TTA) complexes, metal ions are coordinated to the carboxyl groups, but in M(Asp) some metal ions are able to build macrochelate over amine group. Hence, the following intermolecular and as a result independent concentration equilibrium between an open–isomer M(Asp)op and a closed–isomer M(Asp)cl, has to be considered cl op. The amounts are reported. The results mentioned above demonstrate that for some M(Asp) complexes the stability constants is also largely determined by the affinity of metal ions for amine group. This leads to a kind of selectivity of metal ions and transfer them via building complexes with the aspartate. The result of this effect is a higher dosage-absorption of minerals in body. Based on the sort of metal ions, the drug-therapy can be different. For heavy metal ions this building complex helps the absorption and filtration of the blood plasma, and consequently the excursion of heavy metal ions takes place. This is an important method in microdialysis. Other metal ions such as the complexes can be considered as mineral carriers. These complexes in certain conditions (PH–range) can release the minerals in body.
基金Supported by CAS Western Light, " Dr. West funded " Project(0806270XBB)~~
文摘[Objective] The purpose was to discuss the effects of different NaCl concentrations on fresh weight and dry weight,ion absorption and distribution in oil sunflower seedlings. [Method] Under the simulated salt environment by using NaCl solutions at different concentrations,the dry weight,fresh weight and ion content of oil sunflower seedlings were determined. [Result] With the increase of NaCl concentration,the growth rate of oil sunflower seedling was inhibited. In addition,its fresh weight and dry weight also decreased; the fresh weight of leaf decreased most significantly by 60%,and that of cotyledon decreased most slightly by 13% at 200 mmol/L NaCl concentration. The dry weight of root,stem,leaf and cotyledon decreased by 35%,39%,55% and 8% respectively,showing a similar decreasing trend with fresh weight. Under NaCl stress,Na+ content in root and stem of oil sunflower seedling increased while K+ decreased. Na+ content was mainly concentrated in roots and stems much more than in leaves; K+ content in roots decreased most significantly by 21% compared with control,and it was relatively high in leaf. Ca2+ and Mg2+ content was decreased slightly in roots and stems; Ca2+ content in leaves and cotyledons was stable; Mg2+ content was slightly increased. [Conclusion] Oil sunflower maintained high mineral ion absorptionunder salt stress,that maybe the part reason for high salt tolerance of oil sunflower seedlings.
基金Project supported by the Foundation for Young Scholars of University of Electronic Science and Technology of China (Grant No.L08010401JX0806)
文摘Ge^+ ions are implanted into fused silica glass at room temperature and a fluence of 1 × 10^17 cm^-2. The as-implanted samples are annealed in O2, N2 and Ar atmospheres separately. Ge^0, GeO and GeO2 coexist in the as-implanted and annealed samples. Annealing in different atmospheres at 600℃ leads each composite to change its content. After annealing at 1000℃, there remains some amount of Ge^0 in the substrates. However, the content of Ge decreases due to out-diffusion. After annealing in N2, Si N composite is formed. The absorption peak of GeO appears at 240 nm after annealing in O2 atmosphere, and a new absorption peak occurs at 418 nm after annealing in N2 atmosphere, which is attributed to the Si N composite. There is no absorption peak appearing after annealing in Ar atmosphere. Transmission electron microscopic images confirm the formation of Ge nanoparticles in the as-implanted sample and GeO2 nanoparticles in the annealed sample. In the present study, the GeO content and the GeO2 content depend on annealing temperature and atmosphere. Three photolumineseence emission band peaks at 290, 385 and 415 nm appear after ion implantation and they become strong with the increase of annealing temperature below 700℃ and their photoluminescences recover to the values of as-grown samples after annealing at 700℃. Optical absorption and photoluminescence depend on the annealing temperature and atmosphere.
基金Innovation Fund for Technology-based Small Firms (99C26212210085)
文摘The microwave absorption efficiency, which is relevant to magnet field and its distribution, is a major parameter of the microwave ion source (MWIS) for the intense neutron tube. Based on previous work, the relations between microwave absorption efficiency and plasma chamber structure and thickness of the microwave introduction window are studied. The microwave absorption efficiency reaches to 100% when plasma chamber is 100mm long and the window thickness is 30mm. The microwave absorption efficiency as a function of pressure is also presented.
文摘The effect of Er3+ ion concentration on transient and steady-state behavior in 45-nm Er3+ :YAG crystal is investigated. It is shown that by changing the signal field, the coherent field and the concentration of Er3+ ions in the crystal, the absorption, dispersion, and group index of the weak probe field can be adjusted. Also, it is found that the probe absorption occurs in the presence of population inversion and probe amplification is obtained in the absence of population inversion.
基金Project(50234040) supported by the Key Project of the National Natural Science Foundation of ChinaProject(2005AA647010) supported by the National High-Tech Research and Development Program of China
文摘The UV spectra of sodium aluminate solutions were obtained in the sodium oxide concentration range from 59 to 409 g/L and the caustic ratio range from 1.5 to 4.0 to reveal the structure characteristics of them. It is found that a new peak appears at about 370 nm besides peaks at about 220 and 266 nm in all solutions. The new peak is strongly favored by high hydroxide concentration and high caustic ratio. And it only appears when the solutions are prepared by dissolving sodium hydroxide and aluminum hydroxide. In addition, the IR and Raman spectra of sodium aluminate solutions with high alkali concentration and high caustic ratio were measured, and the UV spectra of aqueous solutions of Al( H2O )36+and AlF 36?were measured as well. According to the crystal field theory in coordination chemistry as well as the above spectra characteristics, this new peak at about 370 nm is determined as the evidence of a new species of aluminate ion with a coordination number of 6.
基金Project supported by the National Natural Science Foundation of China (Grant No 20573111) and partly supported by the Center for Computational Science, Hefei Institutes of Physical Sciences, China (Grant No 0331405002).
文摘The multi-charged sulfur ions of Sq^+ (q ≤ 6) have been generated when hydrogen sulfide cluster beams are irradiated by a nanosecond laser of 1064 and 532 nm with an intensity of 10^10- 10^12W.cm^-2. S^6+ is the dominant multicharged species at 1064 nm, while S^4+, S^3+ and S^2+ ions are the main multi-charged species at 532 nm. A three-step model (i.e., multiphoton ionization triggering, inverse bremsstrahlung heating, electron collision ionizing) is proposed to explain the generation of these multi-charged ions at the laser intensity stated above. The high ionization level of the clusters and the increasing charge state of the ion products with increasing laser wavelength are supposed mainly due to the rate-limiting step, i.e., electron heating by absorption energy from the laser field via inverse bremsstrahlung, which is proportional to λ2,λA being the laser wavelength.
文摘The underground disposal of waste arising from the nuclear industry needs constant evaluation in order to improve upon it through minimizing the volume and cost by reducing the amount of glass used without compromising the safety of any leakage from the radioactive waste form. The immobilization of the spent resin (NRW-40) in borosilicate glass was investigated to meet the acceptance criteria for disposal of nuclear waste. The organic mixed bed resin in granular form was used as a waste target. The analysis of surrogate resin doped with radioactive and non-radioactive cesium (Cs) and cobalt (Co) was carried out to investigate their thermal and chemical properties and their compatibility with an alkaline borosilicate glass. The thermal analysis indicates that the structural damage caused by 1 mSv gamma radiation to the radioactive resin has altered its properties in comparison with the non-radioactive resin, same amount of cesium (8.88 wt%) and cobalt (1.88 wt%) were used in both resins. The immobilization of residue shows that the excess sulfur in the residue caused phase crystallization in the final glass matrix. It was found that the volatilization of Cs-137 and Co-60 from the successful radioactive resin-glass matrix (HG-3-IER-500) were more than that in the non-radioactive resin-glass matrix (HG-3-IEX-500). The study demonstrates comprehensive experimental and analytical works and shows that it is possible to minimise the volume of the waste while keeping the required safety levels, however further research needs to be carried out in this area.
文摘High efficient removal and recovery of uranium and thorium from nuclear waste solution are essential for environmental preservation and fuel recycle. A new polymer fiber adsorbent (UHMEPE-g-PAO fiber), prepared by amidoximation of grafted polyacrylonitrile onto Ultra High Molecular Weight Polyethylene (UHMWPE) fiber, was used to remove the uranyl and thorium ions from acid aqueous solutions and its performance was carefully investigated. It was found that uranyl ion can penetrate the fiber through the connected pore structures, forming (UO2) (R-C(NH2)-NO)2 chelates with the amidoxime groups within the fiber. Two amidoxime groups (U-N and U-Oeq) and two water molecules (U-Oeq2) are bound to uranyl ion in the fiber. On the contrary, thorium ions are adsorbed mainly on the fiber surface in the form of Th(OH)4 precipitate that blocks the entrance of Th4+ ion into fiber pores. The maximum included other two capacities of uranyl and thorium ions were estimated to be 262.01 mg/g and 160 mg/g at room temperature with pH 3.0, respectively. The results also indicate that the UHMWPE-g-PAO fiber has higher adsorption selectivity for uranyl ion than thorium ion. Uranium and thorium oxide particles were obtained as the ultimate product after sintering of the fiber adsorbent. This novel and environmentally friendly adsorption process is feasible to extract uranium or thorium from acidic aqueous solution.
基金Project supported by the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2014AM026)the National Natural Science Foundation of China(Grant Nos.11374195 and 11404193)the Taishan Scholar Project of Shandong Province,China
文摘The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with response functions.The responsive mechanism is explored. It is found that the calculated OPA and TPA properties are quite consistent with experimental data. Because the intra-molecular charge transfer(ICT) increases upon zinc ion binding, the TPA intensity is enhanced dramatically. According to the model sensor, we design a series of zinc ion probes which differ by conjugation center, acceptor and donor moieties. The properties of OPA, emission and TPA of the designed molecules are calculated at the same computational level. Our results demonstrate that the OPA and emission wavelengths of the designed probes have large red-shifts after zinc ions have been bound. Comparing with the model sensor, the TPA intensities of the designed probes are enhanced significantly and the absorption positions are red-shifted to longer wavelength range. Furthermore, the TPA intensity can be improved greatly upon zinc ion binding due to the increased ICT mechanism. These compounds are potential excellent candidates for two-photon fluorescent zinc ion probes.
文摘Nessler's reagent spectrophotometry,gas phase molecular absorption spectrometry and ion chromatography were respectively used to determine ammonia nitrogen in surface water.The detection limit,precision,accuracy and recovery rate of the three methods were compared,and the determination results of the actual water samples were analyzed by t test.The results showed that the three methods all could meet the requirement of the laboratory quality control,and there was no significant difference in the determination results.Compared with Nessler's reagent spectrophotometry,the operation of gas phase molecular absorption spectrometry and ion chromatography operation was more convenient and fast and has no pollution,which can be used for the determination of ammonia nitrogen content in a large quantity of surface water samples.