期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Lean and interpretable digital twins for building energy monitoring - A case study with smart thermostatic radiator valves and gas absorption heat pumps 被引量:1
1
作者 Massimiliano Manfren Patrick AB James +1 位作者 Victoria Aragon Lamberto Tronchin 《Energy and AI》 2023年第4期645-659,共15页
The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used a... The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings,together with other benefits.Measured building performance,however,often reveals a significant gap between the predicted energy use(design stage)and actual energy use(operation stage).For this reason,lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement.In this research,interpretable regression models are built with data at multiple temporal resolutions(monthly,daily and hourly)and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves(TRVs)and gas absorption heat pumps(GAHPs)as well as giving insights on the performance of the building as a whole.Further,as part of modelling research,time of week and temperature(TOWT)approach is reformulated and benchmarked against its original implementation.The case study chosen is Hale Court sheltered housing,located in the city of Portsmouth(UK).This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS.The results obtained are used to illustrate possible extensions of the use of energy signature modelling,highlighting implications for energy management and innovative building technologies development. 展开更多
关键词 Data-driven methods Digital twins Energy signature Thermostatic radiator valves Gas absorption heat pumps Energy management Energy Analytics
原文传递
Mathematical model of absorption and hybrid heat pump 被引量:1
2
作者 Grazia Leonzio 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1492-1504,共13页
Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly ... Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems. 展开更多
关键词 absorption heat pumps Hybrid heat pumps LiBr–H2O modeling Energy efficiency Process simulation Mathematical model
下载PDF
Heat and mass transfer through spiral tubes in absorber of absorption heat pump system for waste heat recovery
3
作者 Yoshinori Itaya Masatoshi Yamada +1 位作者 Kenji Marumo Nobusuke Kobayashi 《Propulsion and Power Research》 SCIE 2017年第2期140-146,共7页
Heat and mass transfer of a LiBr/water absorption heat pump system(AHP)was experimentally studied during working a heating-up mode.The examination was performed for a single spiral tube,which was simulated for heat tr... Heat and mass transfer of a LiBr/water absorption heat pump system(AHP)was experimentally studied during working a heating-up mode.The examination was performed for a single spiral tube,which was simulated for heat transfer tubes in an absorber.The inside and outside of the tube were subjected to a film flow of the absorption liquid and exposed to the atmosphere,respectively.The maximum temperature of the absorption liquid was observed not at the entrance but in the region a little downward from the entrance in the tube.The steam absorption convective heat transfer coefficient between the liquid film flowing down and the inside wall of the temperature and the film temperature at the maximum temperature location and the bottom.The film heat and mass transfer coefficients rose with increasing Reynolds number of the liquid film stream.The coefficients showed opposite trend to the empirical correlation reported for laminar film flow on a straight smooth tube in a refrigeration mode in the past work.The fact can be caused due to a turbulent promotion effect of the liquid in a spiral tube. 展开更多
关键词 absorption heat pump A single spiral tube heat and mass transfer Lithium bromide/water Film heat transfer coefficient Mass transfer coefficient Waste heat recovery
原文传递
Thermodynamics of Cascaded Waste Heat Utilization from Flue Gas and Circulating Cooling Water
4
作者 LI Yuanyuan CHEN Xin +1 位作者 JIANG Shan LU Gui 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第6期2166-2178,共13页
A detailed thermal power plant model was developed to evaluate power plant waste heat usage in terms of the operating parameters,energy consumption,water consumption,and pollutant emissions.This model was used to anal... A detailed thermal power plant model was developed to evaluate power plant waste heat usage in terms of the operating parameters,energy consumption,water consumption,and pollutant emissions.This model was used to analyze the bypass flue gas energy cascade utilization design which provides excellent energy savings and emission reductions.This paper then presents a design to use the low-temperature waste heat and to extract water from the flue gas.The low-grade heat can be recovered from a coal-fired unit using absorption heat pumps to increase the air preheating.This method significantly reduces the turbine steam extraction in the low pressure stages which increases the turbine power and reduces the coal consumption.This design has a small heat transfer temperature difference between the air preheater and the air warmer,resulting in a smaller exergy loss.The power output of the present design was 1024.28 MW with a coal consumption savings of 3.69 g·(kWh)^(−1).In addition,the present design extracts moisture out of the flue gas to produce 46.48 t·h^(−1)of water.The main goal of this work is to provide a theoretical analysis for studying complex thermal power plant systems and various energy conservation and CO_(2)reduction options for conventional power plants. 展开更多
关键词 integrated thermal power plant model low-grade waste heat energy cascade utilization exergy losses absorption heat pumps
原文传递
Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam, cooling water, and feedwater for heating 被引量:1
5
作者 Peiyuan PAN Yunyun WU Heng CHEN 《Frontiers in Energy》 SCIE CSCD 2022年第2期321-335,共15页
An advanced cogeneration system based on biomass direct combustion was developed and its feasibility was demonstrated. In place of the traditional single heat source (extraction steam), the extraction steam from the t... An advanced cogeneration system based on biomass direct combustion was developed and its feasibility was demonstrated. In place of the traditional single heat source (extraction steam), the extraction steam from the turbine, the cooling water from the plant condenser, and the low-pressure feedwater from the feedwater preheating system were collectively used for producing district heat in the new scheme. Hence, a remarkable energy-saving effect could be achieved, improving the overall efficiency of the cogeneration system. The thermodynamic and economic performance of the novel system was examined when taking a 35 MW biomass-fired cogeneration unit for case study. Once the biomass feed rate and net thermal production remain constant, an increment of 1.36 MW can be expected in the net electric production, because of the recommended upgrading. Consequently, the total system efficiency and effective electrical efficiency augmented by 1.23 and 1.50 percentage points. The inherent mechanism of performance enhancement was investigated from the energy and exergy aspects. The economic study indicates that the dynamic payback period of the retrofitting project is merely 1.20 years, with a net present value of 5796.0 k$. In conclusion, the proposed concept is validated to be advantageous and profitable. 展开更多
关键词 biomass-fired cogeneration district heat production system absorption heat pump extraction steam cooling water low-pressure feedwater
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部