Transition metal dichalcogenides(TMDs)show great advantages in electromagnetic wave(EMW)absorption due to their unique structure and electrical properties.Tremendous research works on TMD-based EMW absorbers have been...Transition metal dichalcogenides(TMDs)show great advantages in electromagnetic wave(EMW)absorption due to their unique structure and electrical properties.Tremendous research works on TMD-based EMW absorbers have been conducted in the last three years,and the comprehensive and systematical summary is still a rarity.Therefore,it is of great significance to elaborate on the interaction among the morphologies,structures,phases,components,and EMW absorption performances of TMD-based absorbers.This review is devoted to analyzing TMD-based absorbers from the following perspectives:the EMW absorption regulation strategies of TMDs and the latest progress of TMD-based hybrids as EMW absorbers.The absorption mechanisms and component-performance dependency of these achievements are also summarized.Finally,a straightforward insight into industrial revolution upgrading in this promising field is proposed.展开更多
7-Ketophytosterols are the major oxidation products of phytosterols in foods, which have been associated with atherosclerosis. However, their absorption mechanism remains unclear. The aim of our work was to investigat...7-Ketophytosterols are the major oxidation products of phytosterols in foods, which have been associated with atherosclerosis. However, their absorption mechanism remains unclear. The aim of our work was to investigate the absorption mechanism of 7-ketophytosterols and their effects on the cholesterol transport using Caco-2 cell model. The absorption percentage of 7-ketositosterol and 7-ketocampesterol was 1.16%-1.68% and 1.18%-2.23% respectively in the Caco-2 model, which is higher than that of their parent phytosterols, but lower than cholesterol-d7. The apparent permeability of 7-ketositosterol and 7-ketocampesterol at 30 μmol/L in the basolateral(BL)-to-apical(AP)direction were 0.42-and 0.55-fold of that in the AP-to-BL direction, indicating an active intake in the permeation mechanism of 7-ketophytosterols. Ezetimibe could significantly inhibit the transport of 7-ketophytosterols(P < 0.05), which means that their transport depends on niemann-pick c1-like 1(NPC1L1)protein. The transport of cholesterol-d7 was significantly inhibited by 7-ketophytosterols(P < 0.05). Taken together, this study deepened our understanding of the absorption mechanism of common food-born 7-ketophytosterols and provides useful information on the inhibition of 7-ketophytosterols absorption.展开更多
Microwave has been widely used in many fields,including communication,medical treatment and military industry;however,the corresponding generated radiations have been novel hazardous sources of pollution threating hu...Microwave has been widely used in many fields,including communication,medical treatment and military industry;however,the corresponding generated radiations have been novel hazardous sources of pollution threating human’s daily life.Therefore,designing high-performance microwave absorption materials(MAMs)has become an indispensable requirement.Recently,metal-organic frameworks(MOFs)have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure,high porosity and large specific surface area.Usually,MOF-derived MAMs exhibit excellent electrical conductivity,good magnetism and sufficient defects and interfaces,providing obvious merits in both impedance matching and microwave loss.In this review,the recent research progresses on MOF-derived MAMs were profoundly reviewed,including the categories of MOFs and MOF composites precursors,design principles,preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs.Finally,the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed.展开更多
The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the ba...The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the bandwidth of -10-dB reflection loss for PUFA is broadened from 7.4 GHz to 9.1 GHz, which is attributed to the overlap of two absorption peaks originating from CMMA and PUFA, respectively. The values of the two absorption peaks located at 10.15 GHz and 14.7 GHz are -38.44 dB and -40.91 dB, respectively. Additionally, distribution of surface current,electromagnetic field and power loss density are introduced to investigate the absorption mechanism of the CMMA. The electromagnetic field distribution of the double-layered PUFA and the three-layered hybrid absorber are comparatively analyzed to ascertain the influence of CMMA. The results show that the proposed hybrid absorber can be applied to the anti-electromagnetic interference and stealth technology.展开更多
To enhance the microwave absorption performance of silicon carbide nanowires(SiCNWs), SiO_2 nanoshells with a thickness of approximately 2 nm and Fe_3O_4 nanoparticles were grown on the surface of SiCNWs to form SiC...To enhance the microwave absorption performance of silicon carbide nanowires(SiCNWs), SiO_2 nanoshells with a thickness of approximately 2 nm and Fe_3O_4 nanoparticles were grown on the surface of SiCNWs to form SiC@SiO_2@Fe_3O_4 hybrids. The microwave absorption performance of the SiC@SiO_2@Fe_3O_4 hybrids with different thicknesses was investigated in the frequency range from 2 to 18 GHz using a free-space antenna-based system. The results indicate that SiC@SiO_2@Fe_3O_4 hybrids exhibit improved microwave absorption. In particular, in the case of an SiC@SiO_2 to iron(III) acetylacetonate mass ratio of 1:3, the microwave absorption with an absorber of 2-mm thickness exhibited a minimum reflection loss of-39.58 d B at 12.24 GHz. With respect to the enhanced microwave absorption mechanism, the Fe_3O_4 nanoparticles coated on SiC@SiO_2 nanowires are proposed to balance the permeability and permittivity of the materials, contributing to the microwave attenuation.展开更多
Meisoindigo, an indirubin derivative, is a new type of cancer chemotherapeutic agent. It exhibited higher activity against rodent tumors than indirubin itself. Experiments have shown the improved absorption of meisoin...Meisoindigo, an indirubin derivative, is a new type of cancer chemotherapeutic agent. It exhibited higher activity against rodent tumors than indirubin itself. Experiments have shown the improved absorption of meisoindigo, compared to indirubin to be one of the major reasons for the enhancement of antitumor activity. Studies on the mechanism of meisoindigo action indicate that it strongly inhibits DNA biosynthesis in tumor cells. Strong inhibition of the drug on assembly of microtubule protein was also obtained. By means of FCM technique the effects of meisoindigo on mouse leukemia L1210 cell cycle were examined. Experimental results showed that under the action of meisoindigo the S phase cells accumulated and the traverse of the cells in G2 + M phase to G1 phase may also be blocked to some extent.展开更多
Development of high-performance microwave absorption materials(MAM)with stabilized magnetic properties at high temperatures is specifically essential but remains challenging.Moreover,the Snoke's limitation restrai...Development of high-performance microwave absorption materials(MAM)with stabilized magnetic properties at high temperatures is specifically essential but remains challenging.Moreover,the Snoke's limitation restrains the microwave absorption(MA)property of magnetic materials.Modulating alloy components is considered an effective way to solve the aforementioned problems.Herein,a hollow medium-entropy FeCoNiAl alloy with a stable magnetic property is prepared via simple spray-drying and two-step annealing for efficient MA.FeCoNiAl exhibited an ultrabroad effective absorption band(EAB)of 5.84 GHz(12.16–18 GHz)at a thickness of just 1.6 mm,revealing an excellent absorption capability.Furthermore,the MA mechanism of FeCoNiAl is comprehensively investigated via off-axis holography.Finally,the electromagnetic properties,antioxidant properties,and residual magnetism at high temperatures of FeCoNiAl alloys are summarized in detail,providing new insights into the preparation of MAM operating at elevated temperatures.展开更多
The absorption by neutral hydrogen in the intergalactic medium(IGM)produces the Lya forest in the spectra of quasars.The Lya forest absorbers have a broad distribution of neutral hydrogen column density N_(HⅠ) and Do...The absorption by neutral hydrogen in the intergalactic medium(IGM)produces the Lya forest in the spectra of quasars.The Lya forest absorbers have a broad distribution of neutral hydrogen column density N_(HⅠ) and Doppler b parameter.The narrowest Lya absorption lines(of lowest b)with neutral hydrogen column density above~10^(13)cm^(-2) are dominated by thermal broadening,which can be used to constrain the thermal state of the IGM.Here we constrain the temperature-density relation T=T0(ρ/■)γ^(-1) of the IGM at 1.6<z<3.6 by using N_(HⅠ) and b parameters measured from 24 high-resolution and high-signal-to-noise quasar spectra and by employing an analytic model to model the N_(HⅠ) -dependent low-b cutoff in the b distribution.In each N_(HⅠ) bin,the b cutoff is estimated using two methods,one non-parametric method from computing the cumulative b distribution and a parametric method from fitting the full b distribution.We find that the IGM temperature T0 at the mean gas densityρshows a peak of~1.5×10^(4) K at z~2.7-2.9.At redshift higher than this,the indexγapproximately remains constant,and it starts to increase toward lower redshifts.The evolution in both parameters is in good agreement with constraints from completely different approaches,which signals that HeⅡreionization completes around z~3.展开更多
Heterogeneous interface engineering strategy is an effective method to optimize electromagnetic functional materials.However,the mechanism of heterogeneous interfaces on microwave absorption is still unclear.In this s...Heterogeneous interface engineering strategy is an effective method to optimize electromagnetic functional materials.However,the mechanism of heterogeneous interfaces on microwave absorption is still unclear.In this study,abundant heterointerfaces were customized in hierarchical structures via a collaborative strategy of lyophilization and hard templates.The impressive electromagnetic heterostructures and strong interfacial polarization were realized on the zero-dimensional(0D)hexagonal close-packed(hcp)-face-centered cubic(fcc)Co/two-dimensional(2D)Co(OH)_(2)nanosheets@three-dimensional(3D)porous carbon nanosheets(Co/Co(OH)_(2)@PCN).By controlling the carbonization temperature,the electromagnetic parameters were further adjusted to broaden the effective absorption bandwidth(EAB).Accordingly,the EAB of these absorbers were almost greater than 6 GHz(covering the entire Ku-band)in the thickness range of 2.0–2.2 mm except the sample S-1.0-800.As far as to the S-0.8-700 achieved an EAB up to 7.1 GHz at 2.2 mm and the minimum reflection loss(RLmin)value was−25.8 dB.Moreover,in the far-field condition,the radar cross section(RCS)of S-0.8-700 can be reduced to 19.6 dB·m^(2).We believe that this work will stimulate interest in interface engineering and provide a direction for achieving efficient absorbing materials.展开更多
The accelerated arriving of 5G era has brought a new round of intelligent transformation which will completely emancipate smart terminal devices.While the subsequent deleterious effect of electromagnetic wave on elect...The accelerated arriving of 5G era has brought a new round of intelligent transformation which will completely emancipate smart terminal devices.While the subsequent deleterious effect of electromagnetic wave on electronic devices is increasingly serious,driving the growth of next-generation electromagnetic wave absorbents.As a tactful combination of components and structures,three-dimensional(3D)macroscopic absorbents with fascinating synergy afford exceptional electromagnetic wave absorption,and tremendous efforts have been devoted to this investigation.However,in terms of macroscopic absorbents and their synergistic effect,few reviews are proposed to comb the latest achievements and detailed synergy.This review article focuses on the synergistic effect of macro-architectured absorbents mainly including structure-induced synergy,structure-components synergy,and multiple-components induced synergy.And then the potential construction principles and strategies of macroscopic absorbents are combed.Significantly,the key information for structures and components manipulation including nano-micro design and components regulation is further dissected by critically selected cutting-edge 3D macroscopic absorbents.Moreover,a brief summary of multifunctional electromagnetic wave absorbents(EWAs)-based macroscopic structures is presented.Finally,the development prospects and challenges of these materials are discussed.展开更多
In this study,flower-like MoS2 constructed by nanosheets was synthesized by a simple hydrothermal method.The hydrothermal process was optimized and the effects of hydrothermal condition,including reaction temperature,...In this study,flower-like MoS2 constructed by nanosheets was synthesized by a simple hydrothermal method.The hydrothermal process was optimized and the effects of hydrothermal condition,including reaction temperature,reaction time and the ratio of Mo source to S source(Mo:S)in precursor,on microwave absorption performances and dielectric properties were investigated.Our results showed that when the reaction temperature was 180℃,the reaction time was 18 h,and the Mo:S was 1:3.5,the synthesized MoS2 had the best performance:Its minimum reflection loss could reach-55.78 dB,and the corresponding matching thickness was 2.30 mm with a wide effective bandwidth of 5.17 GHz.Further researches on the microwave absorption mechanism revealed that in addition to the destructive interference of electromagnetic waves,various polarization phenomena such as defect dipole polarization were the main reasons for microwave loss.We believe that MoS2 is a candidate for a practical microwave absorbent.展开更多
Objective: Pueraria total flavonids(PTF) can treat cardiovascular and cerebrovascular diseases, but it has poor membrane permeability and oral bioavailability. Some excipients, such as carbomer, chitosan, and hydroxyp...Objective: Pueraria total flavonids(PTF) can treat cardiovascular and cerebrovascular diseases, but it has poor membrane permeability and oral bioavailability. Some excipients, such as carbomer, chitosan, and hydroxypropyl methylcellulose, can improve the oral bioavailability. Traditional in vitro evaluation techniques, including the rat intestinal perfusion and cell line models, cannot evaluate PTF absorption and holistic transporters.Methods: This study evaluated excipients' adhesiveness and effect on PTF transport across Caco-2 cell monolayer. cDNA microarrays identified gene expression changes in Caco-2 cells exposed to PTF and PTF with excipients, and revealed the mechanism underlying the effect of excipients on PTF absorption.Results: In vitro adhesion and transport experiments across Caco-2 showed that excipients had higher adhesiveness to gastric mucosa and transport efficiency across Caco-2 cells than PTF alone. The interaction of PTF with excipients significantly changed the expression of some genes, which might influence the absorption rate of PTF.Conclusion: Different bioadhesive polymers can improve intestinal absorption of PTF, which was related to some genes affiliated to the ATP-binding cassette(ABC) and solute carrier transporter(SLC) to some extent.展开更多
In order to solve the bad low frequency sound absorption of the Micro-Perforated panel (MPP) absorber, mechanical impedance was introduced in the back of the MPP absorber to form a composite structure. According to ...In order to solve the bad low frequency sound absorption of the Micro-Perforated panel (MPP) absorber, mechanical impedance was introduced in the back of the MPP absorber to form a composite structure. According to the same particle vibration velocity on both sides of a plate, the mechanical impedance plate transfer matrix could be obtained. The units of the mechanical impedance, cavity and MPP were connected in series with the use of the transfer matrix method, thus creating the composite structure's theoretical calculation model. The qual- ity factor affecting absorption bandwidth was analyzed. Bandwidth is inversely proportional to the mechanical impedance plate mass. During the experiments, when at close to 400 Hz, the composite structure reached an absorption peak with a coefficient of above 0.8. Experimen- tal results concurred with theoretical calculations. Mechanical resonance is added based on the traditional MPP resonance sound absorption mechanism. Through this, the performance of low frequency sound absorption can be improved without increasing the thickness of the structure. The frequency band can be broadened by reducing the mechanical impedance plate mass and controlling its boundary-damping coefficient.展开更多
To solve the severe electromagnetic(EM)radiation from the widespread application of electronic equipment,we developed a simple template-guided oxypolymerization strategy to synthesize polypyrrole(PPy)planar helixes as...To solve the severe electromagnetic(EM)radiation from the widespread application of electronic equipment,we developed a simple template-guided oxypolymerization strategy to synthesize polypyrrole(PPy)planar helixes as an efficient EM wave(EMW)absorber,and systematically investigated the morphology-dependent chirality,conductivity,and microwave absorption properties.As HCl concentration[HCl]varied from 0 to 2.0 M,the morphology evolved from planar helix to 3D cross-linking network structures,the conductivity increased from 0.0019 to 0.0302 S/cm,and the EM parameters peaked at[HCl]=0.5 M.Compared to other absorbers,the PPy planar helix formed at[HCl]=0 M possessed wider absorption band(5.84 GHz),smaller matching thickness(1.6 mm),lower loading(25 wt.%),and intenser absorption(-48.17 dB).The reason lies in the strong attenuation capability,multiple resonances,multiple scattering,and good impedance matching generated by chiral PPy planar helixes with a distinctive helical configuration,doped heteroatoms(O,S),and a local conductive network.Our results suggest that PPy planar helixes offer great promise for fields such as chiral sensors,electronics,optics,chiral catalysis,and EMW absorption and shielding due to their distinctive morphology,tunable conductivity,and outstanding EMW absorption properties(EMWAPs).展开更多
The mechanism of the atomization of boron and the enhancement of sensitivity by matrix modifier Sr(NO_3)_2 in graphite furnace AAS were discussed.X-ray diffraction and thermodynamic calculation were applied to study t...The mechanism of the atomization of boron and the enhancement of sensitivity by matrix modifier Sr(NO_3)_2 in graphite furnace AAS were discussed.X-ray diffraction and thermodynamic calculation were applied to study the mechanism of boron atomization with and without matrix mo- difier Sr(NO_3)_2.The formation of boron atom is due to the sublimation of solid boron which derived from the reduction of B_2O_3 by carbon.The enhancement of boron signal in the presence of Sr(NO_3)_2 is due to the formation of SrB_6 before atomization,which decreased the volatization losses of B_2O_3 and retarded the formation of B_4C.展开更多
Nanocrystal formulations have been explored to deliver poorly water-soluble drug molecules.Despite various studies of nanocrystal formulation and delivery,much more understanding needs to be gained into absorption mec...Nanocrystal formulations have been explored to deliver poorly water-soluble drug molecules.Despite various studies of nanocrystal formulation and delivery,much more understanding needs to be gained into absorption mechanisms and kinetics of drug nanocrystals at various levels,ranging from cells to tissues and to the whole body.In this study,nanocrystals of tetrakis(4-hydroxyphenyl)ethylene(THPE)with an aggregation-induced emission(AIE)property was used as a model to explore intracellular absorption mechanism and dissolution kinetics of nanocrystals.Cellular uptake studies were conducted with KB cells and characterized by confocal microscopy,fow cytometry,and quantitative analyses.The results suggested that THPE nanocrystals could be taken up by KB cells directly,as well as in the form of dissolved molecules.The cellular uptake was found to be concentration-and timedependent.In addition,the intracellular THPE also could be exocytosed from cells in forms of dissolved molecules and nanocrystals.Kinetic modeling was conducted to further understand the cellular mechanism of THPE nanocrystals based on frst-order ordinary differential equations(ODEs).By ftting the kinetic model against experimental measurements,it was found that the initial nanocrystal concentration had a great infuence on the dynamic process of dissolution,cellular uptake,and exocytosis of THPE nanocrystals.As the nanocrystal concentration increased in the culture media,dissolution of endocytosed nanocrystals became enhanced,subsequently driving the effux of THPE molecules from cells.展开更多
Permeation enhancers(PEs),such as N-[8-(2-hydroxybenzoyl)amino]-caprylate(SNAC),have been reported to improve the oral absorption of various macromolecules.However,the bioavailabilities of these formulations are quite...Permeation enhancers(PEs),such as N-[8-(2-hydroxybenzoyl)amino]-caprylate(SNAC),have been reported to improve the oral absorption of various macromolecules.However,the bioavailabilities of these formulations are quite low and variable due to the influences of enzymes,pH and other gastrointestinal barriers.In this study,we revealed that SNAC could interact with insulin to form tight complexes in a specific concentration(insulin≥ 40μg/mL)-,ratio(SNAC/insulin≥ 20:1)-and pH(≥ 6.8)-dependent manner,thus contributing to a significantly high efficacy of oral insulin delivery.Specifically,absorption mechanism studies revealed that the SNAC/insulin complexes were internalized into the cells by passive diffusion and remained intact when transported in the cytosol.Furthermore,the complexes accelerated the exocytosis of insulin to the basolateral side,thereby enhancing its intestinal mucosal permeability.Eudragit;S100-entrapped SNAC/insulin microspheres were then prepared and exhibited an apparent permeability coefficient(P;) that was 6,6-fold higher than that of the insulin solution.In diabetic rats,hypoglycemic activity was sustained for more than 10 h after the microspheres were loaded into entericcoated capsules.Further pharmacokinetic studies revealed an approximately 6.3% oral bioavailability in both the fasted and fed states,indicating a negligible food effect.Collectively,this study provides insight into the interaction between PEs and payloads and presents an SNAC-based oral insulin delivery system that has high oral bioavailability and patient-friendly medication guidance.展开更多
In this paper,the mechanical degradation of natural fiber composites is studied with the consideration of the relative humidity and the temperature.A nonlinear constitutive model is established,which employs an intern...In this paper,the mechanical degradation of natural fiber composites is studied with the consideration of the relative humidity and the temperature.A nonlinear constitutive model is established,which employs an internal variable to describe the mechanical degradation related to the energy dissipation during moisture absorption.The existing experimental researches demonstrated that the mechanical degradation is an irreversible thermodynamic process induced by the degradation of fibers and the damages of interfaces between fiber and matrix,both of which depend on the variation of the relative humidity or the temperature.The evolution of the mechanical degradation is obtained through the determination of dissipation rates as a function of the relative humidity and the temperature.The theoretically predicted mechanical degradations are compared with experimental results of sisal fiber reinforced composites subject to different relative humidity and temperatures,and a good agreement is found.展开更多
基金financially supported by the Doctoral Foundation of Henan University of Technology(No.2021BS030)Natural Science Foundation of Shandong Province(No.ZR2019YQ24)+1 种基金Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)。
文摘Transition metal dichalcogenides(TMDs)show great advantages in electromagnetic wave(EMW)absorption due to their unique structure and electrical properties.Tremendous research works on TMD-based EMW absorbers have been conducted in the last three years,and the comprehensive and systematical summary is still a rarity.Therefore,it is of great significance to elaborate on the interaction among the morphologies,structures,phases,components,and EMW absorption performances of TMD-based absorbers.This review is devoted to analyzing TMD-based absorbers from the following perspectives:the EMW absorption regulation strategies of TMDs and the latest progress of TMD-based hybrids as EMW absorbers.The absorption mechanisms and component-performance dependency of these achievements are also summarized.Finally,a straightforward insight into industrial revolution upgrading in this promising field is proposed.
基金supported by the National Natural Science Foundation of China (32072179)Zhejiang Provincial Natural Science Foundation of China (LD21C200001)。
文摘7-Ketophytosterols are the major oxidation products of phytosterols in foods, which have been associated with atherosclerosis. However, their absorption mechanism remains unclear. The aim of our work was to investigate the absorption mechanism of 7-ketophytosterols and their effects on the cholesterol transport using Caco-2 cell model. The absorption percentage of 7-ketositosterol and 7-ketocampesterol was 1.16%-1.68% and 1.18%-2.23% respectively in the Caco-2 model, which is higher than that of their parent phytosterols, but lower than cholesterol-d7. The apparent permeability of 7-ketositosterol and 7-ketocampesterol at 30 μmol/L in the basolateral(BL)-to-apical(AP)direction were 0.42-and 0.55-fold of that in the AP-to-BL direction, indicating an active intake in the permeation mechanism of 7-ketophytosterols. Ezetimibe could significantly inhibit the transport of 7-ketophytosterols(P < 0.05), which means that their transport depends on niemann-pick c1-like 1(NPC1L1)protein. The transport of cholesterol-d7 was significantly inhibited by 7-ketophytosterols(P < 0.05). Taken together, this study deepened our understanding of the absorption mechanism of common food-born 7-ketophytosterols and provides useful information on the inhibition of 7-ketophytosterols absorption.
基金Open access funding provided by Shanghai Jiao Tong University.
文摘Microwave has been widely used in many fields,including communication,medical treatment and military industry;however,the corresponding generated radiations have been novel hazardous sources of pollution threating human’s daily life.Therefore,designing high-performance microwave absorption materials(MAMs)has become an indispensable requirement.Recently,metal-organic frameworks(MOFs)have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure,high porosity and large specific surface area.Usually,MOF-derived MAMs exhibit excellent electrical conductivity,good magnetism and sufficient defects and interfaces,providing obvious merits in both impedance matching and microwave loss.In this review,the recent research progresses on MOF-derived MAMs were profoundly reviewed,including the categories of MOFs and MOF composites precursors,design principles,preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs.Finally,the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0204600)the National Natural Science Foundation of China(Grant No.51802352)the Fundamental Research Funds for the Central Universities of Central South University,China(Grant No.2018zzts355)
文摘The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the bandwidth of -10-dB reflection loss for PUFA is broadened from 7.4 GHz to 9.1 GHz, which is attributed to the overlap of two absorption peaks originating from CMMA and PUFA, respectively. The values of the two absorption peaks located at 10.15 GHz and 14.7 GHz are -38.44 dB and -40.91 dB, respectively. Additionally, distribution of surface current,electromagnetic field and power loss density are introduced to investigate the absorption mechanism of the CMMA. The electromagnetic field distribution of the double-layered PUFA and the three-layered hybrid absorber are comparatively analyzed to ascertain the influence of CMMA. The results show that the proposed hybrid absorber can be applied to the anti-electromagnetic interference and stealth technology.
基金financially supported by the National Science Fund for Excellent Young Scholars of China (No.51522402)the National Natural Science Foundation of China (Nos. 51572019 and U1460201)the Fundamental Research Funds for the Central Universities (No. FRF-TP-15-006C1)
文摘To enhance the microwave absorption performance of silicon carbide nanowires(SiCNWs), SiO_2 nanoshells with a thickness of approximately 2 nm and Fe_3O_4 nanoparticles were grown on the surface of SiCNWs to form SiC@SiO_2@Fe_3O_4 hybrids. The microwave absorption performance of the SiC@SiO_2@Fe_3O_4 hybrids with different thicknesses was investigated in the frequency range from 2 to 18 GHz using a free-space antenna-based system. The results indicate that SiC@SiO_2@Fe_3O_4 hybrids exhibit improved microwave absorption. In particular, in the case of an SiC@SiO_2 to iron(III) acetylacetonate mass ratio of 1:3, the microwave absorption with an absorber of 2-mm thickness exhibited a minimum reflection loss of-39.58 d B at 12.24 GHz. With respect to the enhanced microwave absorption mechanism, the Fe_3O_4 nanoparticles coated on SiC@SiO_2 nanowires are proposed to balance the permeability and permittivity of the materials, contributing to the microwave attenuation.
文摘Meisoindigo, an indirubin derivative, is a new type of cancer chemotherapeutic agent. It exhibited higher activity against rodent tumors than indirubin itself. Experiments have shown the improved absorption of meisoindigo, compared to indirubin to be one of the major reasons for the enhancement of antitumor activity. Studies on the mechanism of meisoindigo action indicate that it strongly inhibits DNA biosynthesis in tumor cells. Strong inhibition of the drug on assembly of microtubule protein was also obtained. By means of FCM technique the effects of meisoindigo on mouse leukemia L1210 cell cycle were examined. Experimental results showed that under the action of meisoindigo the S phase cells accumulated and the traverse of the cells in G2 + M phase to G1 phase may also be blocked to some extent.
基金supported by the Ministry of Science and Technology of China(No.2021YFA1200600)the National Natural Science Foundation of China(Nos.52231007,12327804,22088101,51725101,and T2321003)+4 种基金the Science and Technology Research Project of Jiangxi Provincial Department of Education(No.GJJ200338)Key Research Project of Zhejiang Lab(No.2021PE0AC02)the“Chenguang Program”by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.21CGA04)sponsored by Shanghai Sailing Program(No.21YF1401800)the Fund of Science and Technology on Surface Physics and Chemistry Laboratory(No.JCKYS2023120201).
文摘Development of high-performance microwave absorption materials(MAM)with stabilized magnetic properties at high temperatures is specifically essential but remains challenging.Moreover,the Snoke's limitation restrains the microwave absorption(MA)property of magnetic materials.Modulating alloy components is considered an effective way to solve the aforementioned problems.Herein,a hollow medium-entropy FeCoNiAl alloy with a stable magnetic property is prepared via simple spray-drying and two-step annealing for efficient MA.FeCoNiAl exhibited an ultrabroad effective absorption band(EAB)of 5.84 GHz(12.16–18 GHz)at a thickness of just 1.6 mm,revealing an excellent absorption capability.Furthermore,the MA mechanism of FeCoNiAl is comprehensively investigated via off-axis holography.Finally,the electromagnetic properties,antioxidant properties,and residual magnetism at high temperatures of FeCoNiAl alloys are summarized in detail,providing new insights into the preparation of MAM operating at elevated temperatures.
基金supported by the National Key R&D Program of China (Grant No.2018YFA0404503)the support of China Scholarship Council (No.201804910563)+2 种基金the hospitality of the Department of Physics and Astronomy at the University of Utah during her visitsupported by NSF grant AST-2007499The support and resources from the Center for High Performance Computing at the University of Utah。
文摘The absorption by neutral hydrogen in the intergalactic medium(IGM)produces the Lya forest in the spectra of quasars.The Lya forest absorbers have a broad distribution of neutral hydrogen column density N_(HⅠ) and Doppler b parameter.The narrowest Lya absorption lines(of lowest b)with neutral hydrogen column density above~10^(13)cm^(-2) are dominated by thermal broadening,which can be used to constrain the thermal state of the IGM.Here we constrain the temperature-density relation T=T0(ρ/■)γ^(-1) of the IGM at 1.6<z<3.6 by using N_(HⅠ) and b parameters measured from 24 high-resolution and high-signal-to-noise quasar spectra and by employing an analytic model to model the N_(HⅠ) -dependent low-b cutoff in the b distribution.In each N_(HⅠ) bin,the b cutoff is estimated using two methods,one non-parametric method from computing the cumulative b distribution and a parametric method from fitting the full b distribution.We find that the IGM temperature T0 at the mean gas densityρshows a peak of~1.5×10^(4) K at z~2.7-2.9.At redshift higher than this,the indexγapproximately remains constant,and it starts to increase toward lower redshifts.The evolution in both parameters is in good agreement with constraints from completely different approaches,which signals that HeⅡreionization completes around z~3.
基金supported by the National Natural Science Foundation of China(Nos.51971111 and 52273247)the Fund of Prospective Layout of Scientific Research for NUAA(Nanjing University of Aeronautics and Astronautics)(No.ILA220461A22).
文摘Heterogeneous interface engineering strategy is an effective method to optimize electromagnetic functional materials.However,the mechanism of heterogeneous interfaces on microwave absorption is still unclear.In this study,abundant heterointerfaces were customized in hierarchical structures via a collaborative strategy of lyophilization and hard templates.The impressive electromagnetic heterostructures and strong interfacial polarization were realized on the zero-dimensional(0D)hexagonal close-packed(hcp)-face-centered cubic(fcc)Co/two-dimensional(2D)Co(OH)_(2)nanosheets@three-dimensional(3D)porous carbon nanosheets(Co/Co(OH)_(2)@PCN).By controlling the carbonization temperature,the electromagnetic parameters were further adjusted to broaden the effective absorption bandwidth(EAB).Accordingly,the EAB of these absorbers were almost greater than 6 GHz(covering the entire Ku-band)in the thickness range of 2.0–2.2 mm except the sample S-1.0-800.As far as to the S-0.8-700 achieved an EAB up to 7.1 GHz at 2.2 mm and the minimum reflection loss(RLmin)value was−25.8 dB.Moreover,in the far-field condition,the radar cross section(RCS)of S-0.8-700 can be reduced to 19.6 dB·m^(2).We believe that this work will stimulate interest in interface engineering and provide a direction for achieving efficient absorbing materials.
基金supported by the National Natural Science Foundation of China(No.52274362)the Doctorial Foundation of Henan University of Technology(Nos.2021BS030 and 2020BS030)+5 种基金the Key R&D projects of Henan Province(No.221111230800)the Innovative Funds Plan of Henan University of Technology(No.2021ZKCJ05)the Key Scientific and Technological Research Projects in Henan Province(No.222102240091)the Natural Science Foundation from the Department of Science and Technology of Henan Province(No.232300420309)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Key Laboratory of Engineering Dielectrics and Its Application(Harbin University of Science and Technology),Ministry of Education.
文摘The accelerated arriving of 5G era has brought a new round of intelligent transformation which will completely emancipate smart terminal devices.While the subsequent deleterious effect of electromagnetic wave on electronic devices is increasingly serious,driving the growth of next-generation electromagnetic wave absorbents.As a tactful combination of components and structures,three-dimensional(3D)macroscopic absorbents with fascinating synergy afford exceptional electromagnetic wave absorption,and tremendous efforts have been devoted to this investigation.However,in terms of macroscopic absorbents and their synergistic effect,few reviews are proposed to comb the latest achievements and detailed synergy.This review article focuses on the synergistic effect of macro-architectured absorbents mainly including structure-induced synergy,structure-components synergy,and multiple-components induced synergy.And then the potential construction principles and strategies of macroscopic absorbents are combed.Significantly,the key information for structures and components manipulation including nano-micro design and components regulation is further dissected by critically selected cutting-edge 3D macroscopic absorbents.Moreover,a brief summary of multifunctional electromagnetic wave absorbents(EWAs)-based macroscopic structures is presented.Finally,the development prospects and challenges of these materials are discussed.
基金financially supported by the National Natural Science Foundation of China(No.21403298)。
文摘In this study,flower-like MoS2 constructed by nanosheets was synthesized by a simple hydrothermal method.The hydrothermal process was optimized and the effects of hydrothermal condition,including reaction temperature,reaction time and the ratio of Mo source to S source(Mo:S)in precursor,on microwave absorption performances and dielectric properties were investigated.Our results showed that when the reaction temperature was 180℃,the reaction time was 18 h,and the Mo:S was 1:3.5,the synthesized MoS2 had the best performance:Its minimum reflection loss could reach-55.78 dB,and the corresponding matching thickness was 2.30 mm with a wide effective bandwidth of 5.17 GHz.Further researches on the microwave absorption mechanism revealed that in addition to the destructive interference of electromagnetic waves,various polarization phenomena such as defect dipole polarization were the main reasons for microwave loss.We believe that MoS2 is a candidate for a practical microwave absorbent.
基金supported by the national natural science fund projects(No.81274094)
文摘Objective: Pueraria total flavonids(PTF) can treat cardiovascular and cerebrovascular diseases, but it has poor membrane permeability and oral bioavailability. Some excipients, such as carbomer, chitosan, and hydroxypropyl methylcellulose, can improve the oral bioavailability. Traditional in vitro evaluation techniques, including the rat intestinal perfusion and cell line models, cannot evaluate PTF absorption and holistic transporters.Methods: This study evaluated excipients' adhesiveness and effect on PTF transport across Caco-2 cell monolayer. cDNA microarrays identified gene expression changes in Caco-2 cells exposed to PTF and PTF with excipients, and revealed the mechanism underlying the effect of excipients on PTF absorption.Results: In vitro adhesion and transport experiments across Caco-2 showed that excipients had higher adhesiveness to gastric mucosa and transport efficiency across Caco-2 cells than PTF alone. The interaction of PTF with excipients significantly changed the expression of some genes, which might influence the absorption rate of PTF.Conclusion: Different bioadhesive polymers can improve intestinal absorption of PTF, which was related to some genes affiliated to the ATP-binding cassette(ABC) and solute carrier transporter(SLC) to some extent.
基金supported by the Scientific Research Foundation for Senior Professional of Jiangsu University(11JDG096)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions((2011)6)
文摘In order to solve the bad low frequency sound absorption of the Micro-Perforated panel (MPP) absorber, mechanical impedance was introduced in the back of the MPP absorber to form a composite structure. According to the same particle vibration velocity on both sides of a plate, the mechanical impedance plate transfer matrix could be obtained. The units of the mechanical impedance, cavity and MPP were connected in series with the use of the transfer matrix method, thus creating the composite structure's theoretical calculation model. The qual- ity factor affecting absorption bandwidth was analyzed. Bandwidth is inversely proportional to the mechanical impedance plate mass. During the experiments, when at close to 400 Hz, the composite structure reached an absorption peak with a coefficient of above 0.8. Experimen- tal results concurred with theoretical calculations. Mechanical resonance is added based on the traditional MPP resonance sound absorption mechanism. Through this, the performance of low frequency sound absorption can be improved without increasing the thickness of the structure. The frequency band can be broadened by reducing the mechanical impedance plate mass and controlling its boundary-damping coefficient.
基金supported by the National Natural Science Foundation of China(Grant No. 52073260)the Public Utility Items of Zhejiang Province (Grant No. LGG21E020002)+1 种基金the Industrial Key Projects of Jinhua City (Grant No.2019A12238)the Self-Topic Fund of Zhejiang Normal University(Grant No. 2020ZS04)
文摘To solve the severe electromagnetic(EM)radiation from the widespread application of electronic equipment,we developed a simple template-guided oxypolymerization strategy to synthesize polypyrrole(PPy)planar helixes as an efficient EM wave(EMW)absorber,and systematically investigated the morphology-dependent chirality,conductivity,and microwave absorption properties.As HCl concentration[HCl]varied from 0 to 2.0 M,the morphology evolved from planar helix to 3D cross-linking network structures,the conductivity increased from 0.0019 to 0.0302 S/cm,and the EM parameters peaked at[HCl]=0.5 M.Compared to other absorbers,the PPy planar helix formed at[HCl]=0 M possessed wider absorption band(5.84 GHz),smaller matching thickness(1.6 mm),lower loading(25 wt.%),and intenser absorption(-48.17 dB).The reason lies in the strong attenuation capability,multiple resonances,multiple scattering,and good impedance matching generated by chiral PPy planar helixes with a distinctive helical configuration,doped heteroatoms(O,S),and a local conductive network.Our results suggest that PPy planar helixes offer great promise for fields such as chiral sensors,electronics,optics,chiral catalysis,and EMW absorption and shielding due to their distinctive morphology,tunable conductivity,and outstanding EMW absorption properties(EMWAPs).
文摘The mechanism of the atomization of boron and the enhancement of sensitivity by matrix modifier Sr(NO_3)_2 in graphite furnace AAS were discussed.X-ray diffraction and thermodynamic calculation were applied to study the mechanism of boron atomization with and without matrix mo- difier Sr(NO_3)_2.The formation of boron atom is due to the sublimation of solid boron which derived from the reduction of B_2O_3 by carbon.The enhancement of boron signal in the presence of Sr(NO_3)_2 is due to the formation of SrB_6 before atomization,which decreased the volatization losses of B_2O_3 and retarded the formation of B_4C.
基金the financial support by the China Scholarship Council(No.201806995008,China)Key Projects of Chinese Medicine Research of Chongqing Municipal Health Bureau(ZY201701004,China)the Chao Endowment and Purdue Research Foundation for support(USA)。
文摘Nanocrystal formulations have been explored to deliver poorly water-soluble drug molecules.Despite various studies of nanocrystal formulation and delivery,much more understanding needs to be gained into absorption mechanisms and kinetics of drug nanocrystals at various levels,ranging from cells to tissues and to the whole body.In this study,nanocrystals of tetrakis(4-hydroxyphenyl)ethylene(THPE)with an aggregation-induced emission(AIE)property was used as a model to explore intracellular absorption mechanism and dissolution kinetics of nanocrystals.Cellular uptake studies were conducted with KB cells and characterized by confocal microscopy,fow cytometry,and quantitative analyses.The results suggested that THPE nanocrystals could be taken up by KB cells directly,as well as in the form of dissolved molecules.The cellular uptake was found to be concentration-and timedependent.In addition,the intracellular THPE also could be exocytosed from cells in forms of dissolved molecules and nanocrystals.Kinetic modeling was conducted to further understand the cellular mechanism of THPE nanocrystals based on frst-order ordinary differential equations(ODEs).By ftting the kinetic model against experimental measurements,it was found that the initial nanocrystal concentration had a great infuence on the dynamic process of dissolution,cellular uptake,and exocytosis of THPE nanocrystals.As the nanocrystal concentration increased in the culture media,dissolution of endocytosed nanocrystals became enhanced,subsequently driving the effux of THPE molecules from cells.
基金financial support from the National Natural Science Foundation of China (Nos. 81773651,82025032 and 82073773)NN-CAS foundation+3 种基金National Key R&D Program of China (No. 2020YFE0201700)Chinese Pharmacopoeia Commission (Nos. 2021Y30 and 2021Y25)the Shanghai Science and Technology Committee (No. 18430721600)the Major International Joint Research Project of Chinese Academy of Sciences(No. 153631KYSB20190020。
文摘Permeation enhancers(PEs),such as N-[8-(2-hydroxybenzoyl)amino]-caprylate(SNAC),have been reported to improve the oral absorption of various macromolecules.However,the bioavailabilities of these formulations are quite low and variable due to the influences of enzymes,pH and other gastrointestinal barriers.In this study,we revealed that SNAC could interact with insulin to form tight complexes in a specific concentration(insulin≥ 40μg/mL)-,ratio(SNAC/insulin≥ 20:1)-and pH(≥ 6.8)-dependent manner,thus contributing to a significantly high efficacy of oral insulin delivery.Specifically,absorption mechanism studies revealed that the SNAC/insulin complexes were internalized into the cells by passive diffusion and remained intact when transported in the cytosol.Furthermore,the complexes accelerated the exocytosis of insulin to the basolateral side,thereby enhancing its intestinal mucosal permeability.Eudragit;S100-entrapped SNAC/insulin microspheres were then prepared and exhibited an apparent permeability coefficient(P;) that was 6,6-fold higher than that of the insulin solution.In diabetic rats,hypoglycemic activity was sustained for more than 10 h after the microspheres were loaded into entericcoated capsules.Further pharmacokinetic studies revealed an approximately 6.3% oral bioavailability in both the fasted and fed states,indicating a negligible food effect.Collectively,this study provides insight into the interaction between PEs and payloads and presents an SNAC-based oral insulin delivery system that has high oral bioavailability and patient-friendly medication guidance.
基金supported by National Natural Science Foundation of China(Grant No.11572227)
文摘In this paper,the mechanical degradation of natural fiber composites is studied with the consideration of the relative humidity and the temperature.A nonlinear constitutive model is established,which employs an internal variable to describe the mechanical degradation related to the energy dissipation during moisture absorption.The existing experimental researches demonstrated that the mechanical degradation is an irreversible thermodynamic process induced by the degradation of fibers and the damages of interfaces between fiber and matrix,both of which depend on the variation of the relative humidity or the temperature.The evolution of the mechanical degradation is obtained through the determination of dissipation rates as a function of the relative humidity and the temperature.The theoretically predicted mechanical degradations are compared with experimental results of sisal fiber reinforced composites subject to different relative humidity and temperatures,and a good agreement is found.