期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optical Absorption Enhancement Effects of Silver Nanodisk Arrays in the Application of Silicon Solar Cell 被引量:1
1
作者 Xiao-Ping Huang Zao-Jin Zeng Lei Zhong Dan Wu Fang-Chun Yan 《Journal of Electronic Science and Technology》 CAS 2011年第1期35-40,共6页
Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole... Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole approximation (DDA),we study the absorption and scattering properties of two-dimensional square silver nanodisks (2D SSN) arrays on the single crystal silicon solar cell.Based on the effective reflective index model of the single crystal silicon solar cell,we investigate the optical enhancement absorption of light energy by varying the light incident direction,particle size,aspect ratio,and interparticle spacing of the silver nanodisks.The peak values and position of the optical extinction spectra of the 2D square arrays of noble metal nanodisks are obtained with the different array structures. 展开更多
关键词 Effective reflective index model optical absorption enhancement effects silicon solar cell two-dimensional square silver nanodisks arrays.
下载PDF
Dynamic thermal modeling and parameter identification for a monolithic laser diode module
2
作者 李金义 杜振辉 +1 位作者 马艺闻 徐可欣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期317-322,共6页
We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal p... We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal parameters and the transient junction temperature of the LDM are modeled and obtained according to the temperature of the thermistor integrated in the module.Our improved thermal model is verified indirectly by monitoring the emission wavelength of the laser diode against gas absorption lines,and several thermal parameters are obtained with the temperature uncertainty of 0.01 K in the thermal dynamic process. 展开更多
关键词 laser diode module dynamic thermal modeling thermal time constant tunable diode laser absorption spectroscopy(TDLAS)
下载PDF
Enhancement of solar cells parameters by periodic nanocylinders
3
作者 Najdia Benaziez Abdelhamid Ounissi Safia Benaziez 《Journal of Semiconductors》 EI CAS CSCD 2016年第6期64-71,共8页
Optical absorption in thin-film solar cells can be improved by using surface plasmons for guiding and confining the light on the nanoscale.We report theoretical and simulation studies of a-Si thin-film solar cells wit... Optical absorption in thin-film solar cells can be improved by using surface plasmons for guiding and confining the light on the nanoscale.We report theoretical and simulation studies of a-Si thin-film solar cells with silver nanocylinders on the surface.We found that surface plasmons increased the cells' spectral response over almost the entire studied solar spectrum.In the ultraviolet range and at wavelengths close to the Si band gap we observed a significant enhancement of the absorption for both thin-film and wafer-based structures.We also performed optimization studies of particle size,inter-particle distance,and dielectric environment,for obtaining maximal absorption within the substrate.A blue-shift of the resonance wavelength with increasing inter-particle distance was observed in the visible range.Cell performance improved at optimal spacing,which strongly depended on the nanoparticle size.Increasing the nanocylinder size was accompanied by the widening of the plasmon resonance band and a red-shift of the plasmon resonance peaks.A weak red-shift and plasmon peak enhancement were observed in the reflectance curve with increasing refractive index of the dielectric spacer. 展开更多
关键词 plasmonic solar cell enhancement of absorption nanostructures transfer matrix method Maxwell-Garnett's model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部